POJ 1095
#include <iostream>
#define MAXN 20
using namespace std;
__int64 cat[MAXN];
int sum;
void give_catalan();
void dfs(int node,int num);
int main()
{
//freopen("acm.acm","r",stdin);
give_catalan();
int n;
int i;
int sum;
while(cin>>n,n)
{
sum = ;
for(i = ; sum < n; ++ i)
{
sum += cat[i];
}
-- i;
sum -= cat[i];
dfs(i,n-sum);
cout<<endl;
}
} void dfs(int node,int num)
{
if(node == )
{
cout<<'X';
return;
}
int i;
int j;
int sum = ;
for(i = ; sum < num; ++i)
{
sum += cat[i]*cat[node-i-];
}
-- i;
sum -= cat[i]*cat[node-i-];
num -= sum;
if(i > )
{
cout<<"(";
dfs(i,(num-)/cat[node-i-]+);
cout<<")";
}
cout<<'X';
if(node--i > )
{
cout<<"(";
dfs(node--i,(num-)% cat[node-i-]+);
cout<<")";
}
}
void give_catalan()
{
int i;
int j;
cat[] = ;
cat[] = ;
for(i = ; i < ; ++ i)
{
cat[i] = *(*(i-)+)*cat[i-]/(i+);
// printf("%d\n",cat[i]);
}
}
/*
定理:n个结点能形成的二叉树总数为 卡特兰数 C(2n,n)/(n+1) 或者由递推公式Ci+1=2*(2*i+1) /(i+2)*Ci
for(i=2;i<20;i++)
{
a[i]=2*(2*(i-1)+1)*a[i-1]/(i+1) ;//卡特兰数递推公式
b[i]=b[i-1]+a[i];
} (2).继续转化问题,这棵树的左子树和右子树各有结点数多少?设这棵树左子树的结点数为i,右子树的结点数为n-i-1,
那么这棵树是又左子树的结点数为i,右子树的结点数为n-i-1的形态的第几种(设为第s种)?可以知道当1<=k<=L[0]*L[n-1]时,
左子树结点树为0,右子树结点数为n-1,s=k;L[0]*L[n-1]+1<=k<=L[1]*L[n-2]时,,左子树结点树为1,
右子树结点数为n-2,s=k- L[0]*L[n-1] ;...当L[i-1]*L[n-i]+1<= L[i]*L[n-i+1]时,左子树结点树为i,
右子树结点数为n-i-1, 。 (3).继续想象s增长的过程即为树形态不断发生变化的过程。那么首先是右子树在发生变化,从1到L[n-i-1]。
继续增长,右子树的形态复位为1,而左子树的形态增加1.因此右子树相当于秒针,左子树相当于分针。
对于s,该树的左子树编号为(s-1)/L[n-i-1]+1,右子树编号为(s-1)% L[n-i-1]+1。 (4).fun(n,k)的递归终止条件很容易知道,为n==1。此时树的形态只有一种,所以直接打印X。
*/
关注我的公众号,当然,如果你对Java, Scala, Python等技术经验,以及编程日记,感兴趣的话。
技术网站地址: vmfor.com
POJ 1095的更多相关文章
- poj 1095 Trees Made to Order
http://poj.org/problem?id=1095 先求出n个节点数的二叉树的形态有多少种.卡特兰数f[n]=f[n-1]*(4*n-2)/(n+1);再递归求. #include < ...
- POJ 1095 Trees Made to Order(卡特兰数列)
题目链接 中间计算的各种细节.有的细节没处理好,就wa了...主要思路就是根据卡特兰数列的: h(n)= h(0)*h(n-1)+h(1)*h(n-2) + ... + h(n-1)h(0) (n&g ...
- poj 1095 Trees Made to Order 卡特兰数
这题用到了卡特兰数,详情见:http://www.cnblogs.com/jackge/archive/2013/05/19/3086519.html 解体思路详见:http://blog.csdn. ...
- poj 1095 题解(卡特兰数+递归
题目 题意:给出一个二叉树的编号,问形态. 编号依据 1:如果二叉树为空,则编号为0: 2:如果二叉树只有一个节点,则编号为1: 3:所有含有m个节点的二叉树的编号小于所有含有m+1个节点的二叉树的编 ...
- POJ 1095 Trees Made to Order 最详细的解题报告
题目来源:Trees Made to Order 题目大意:根据下面的规则给一棵二叉树编号: 规则1:如果二叉树为空,则编号为0: 规则2:如果二叉树只有一个节点,则编号为1: 规则3:所有含有m个节 ...
- poj很好很有层次感(转)
OJ上的一些水题(可用来练手和增加自信) (POJ 3299,POJ 2159,POJ 2739,POJ 1083,POJ 2262,POJ 1503,POJ 3006,POJ 2255,POJ 30 ...
- POJ题目分类推荐 (很好很有层次感)
著名题单,最初来源不详.直接来源:http://blog.csdn.net/a1dark/article/details/11714009 OJ上的一些水题(可用来练手和增加自信) (POJ 3299 ...
- POJ推荐50题
此文来自北京邮电大学ACM-ICPC集训队 此50题在本博客均有代码,可以在左侧的搜索框中搜索题号查看代码. 以下是原文: POJ推荐50题1.标记“难”和“稍难”的题目可以看看,思考一下,不做要求, ...
- POJ题目排序的Java程序
POJ 排序的思想就是根据选取范围的题目的totalSubmittedNumber和totalAcceptedNumber计算一个avgAcceptRate. 每一道题都有一个value,value ...
随机推荐
- hdu-1121(差分法--数学问题)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1121 参考文章:https://blog.csdn.net/fengzhizi76506/articl ...
- java redis基本操作
package com.redis; import java.util.ArrayList;import java.util.Iterator;import java.util.List;import ...
- DDR的型号问题
一.DDR的容量大小 先看下micron公司对DDR3命名的规则: 1.meg的含义: 内存中Meg的含义:Meg就是兆的含义,即1000,000. MT47H64M16 – 8 Meg x 16 x ...
- Shiro ini 过滤器
http://shiro.apache.org/web.html#Web-WebINIconfiguration Filter Name Class anon org.apache.shiro.web ...
- HDU 3472 混合图欧拉回路 + 网络流
九野的博客,转载请注明出处:http://blog.csdn.net/acmmmm/article/details/13799337 题意: T个测试数据 n串字符 能否倒过来用(1表示能倒着用) 问 ...
- 程序员MAC必备
排名不分先后 • iTerm 2 终端工具(建议配合oh-my-zsh使用) • Shadowsocks ***工具 (可用于FQ) • Foxmail 邮箱工具 (适用于企业邮箱登陆) • ...
- Send or receive files via Xshell
1. install lrzsz $ sudo apt-get install lrzsz 2. If you want to send file from your pc to pi, just d ...
- web中浏览PDF文件
1.在web中浏览pdf文件. 2.支持大多数主流浏览器,包括IE8 3.参考网址: https://pdfobject.com/ http://mozilla.github.io/pdf.js/ & ...
- .net core 与ELK(4)后台运行els可视化工具和Kibana
which nohup .bash_profile中并source加载 如果没有就安装吧 yum provides */nohup nohup npm run start & nohup ./ ...
- electron-vue 开发环境搭建(Windows环境)
1.安装 Node.js,一切都基于这个.安装完成后,终端输入 node -v 验证. 2.建立自己的项目目录,然后进入目录. 安装 vue-cli ,终端输入 npm install -g vue- ...