本帖最后由 Cresta 于 2014-1-21 10:49 编辑

看到这篇C51的内存分配和优化的文章,个人觉得分析的十分到位,在这里转给大家
 
C51的内存分配不同于一般的PC,内存空间有限,采用覆盖和共享技术。在Keil编译器中,经过编译后,会形成一个M51文件,在其内部可以详细的看到内存的分配情况。
C51内存常见的两个误区:
(1)       变量超过128字节后必须用COMPACT模式。
其实,只要不超过256字节,都可以用SMALL模式
(2)       内部RAM,128字节以上的是SFR用,不给程序用。
其实,由于C51寻址的不同,高128字节也可以用来存储变量,虽与SFR地址相同,但寻址的方式不同。
下面通过几个程序来看内存的分配。
*******************************************************************************
//程序1:
#include <reg51.h>
void main()
{}
Program Size: data=9.0 xdata=0 code=16
TYPE    BASE      LENGTH    RELOCATION   SEGMENT NAME
            -----------------------------------------------------
 
            * * * * * * *   D A T A   M E M O R Y   * * * * * * *
            REG     0000H     0008H     ABSOLUTE     "REG BANK 0"
            IDATA   0008H     0001H     UNIT         ?STACK
 
*******************************************************************************
从上面可以看到,即使程序内部无任何变量和函数data也会为9.0。这9个字节内存分别为R0-R8和一个堆栈指针(C51的堆栈是“grow up”,即使堆栈中没有内容,也会有一个栈底指针)。data区中由于R0-R8占有8个存储空间,因此data区最大为120字节(栈在所有的变量空间 之后),如果超过120个字节则由idata显式的指定为间接寻址。对于整个内部256字节的RAM,在极端的情况下,最大的变量为247字节。
 
当定义全局变量时
*******************************************************************************
//程序2:
#include<reg51.h>
#define uint unsigned int
#define uchar unsigned char
uchar a;
uint b;
void main()
{}
Program Size: data=12.0 xdata=0 code=16
TYPE    BASE      LENGTH    RELOCATION   SEGMENT NAME
            -----------------------------------------------------
 
            * * * * * * *   D A T A   M E M O R Y   * * * * * * *
            REG     0000H     0008H     ABSOLUTE     "REG BANK 0"
            DATA    0008H     0003H     UNIT         ?DT?MAIN
            IDATA   000BH     0001H     UNIT         ?STACK
 
            * * * * * * *   C O D E   M E M O R Y   * * * * * * *
            CODE    0000H     0003H     ABSOLUTE   
            CODE    0003H     000CH     UNIT         ?C_C51STARTUP
            CODE    000FH     0001H     UNIT         ?PR?MAIN?MAIN
*******************************************************************************
存在全局变量时,根据全局变量的类型分配相应的存储空间。
看下面的程序
*****************************************************************
//程序3:
#include<reg51.h>
#define uint unsigned int
#define uchar unsigned char
uchar a;
uint b;
 
uint sum(uint c)
{
    uint d;
    d = c;
    return d;
}
void main()
{}
Program Size: data=12.0 xdata=0 code=17
TYPE    BASE      LENGTH    RELOCATION   SEGMENT NAME
            -----------------------------------------------------
 
            * * * * * * *   D A T A   M E M O R Y   * * * * * * *
            REG     0000H     0008H     ABSOLUTE     "REG BANK 0"
            DATA    0008H     0003H     UNIT         ?DT?MAIN
            IDATA   000BH     0001H     UNIT         ?STACK
 
            * * * * * * *   C O D E   M E M O R Y   * * * * * * *
            CODE    0000H     0003H     ABSOLUTE   
            CODE    0003H     000CH     UNIT         ?C_C51STARTUP
            CODE    000FH     000CH     UNIT         ?PR?MAIN?MAIN
            CODE    001BH     0001H     UNIT         ?PR?_SUM?MAIN
********************************************************************
与上面的程序想比较,发现内存并没有任何的变化。
看下面的程序
***************************************************************************
//程序4:
#include<reg51.h>
#define uint unsigned int
#define uchar unsigned char
uchar a;
uint b;
 
uint sum(uint c)
{
    uint d;
    d = c;
    return d;
}
void main()
{
    b = sum(5);
}
Program Size: data=12.0 xdata=0 code=28
TYPE    BASE      LENGTH    RELOCATION   SEGMENT NAME
            -----------------------------------------------------
 
            * * * * * * *   D A T A   M E M O R Y   * * * * * * *
            REG     0000H     0008H     ABSOLUTE     "REG BANK 0"
            DATA    0008H     0003H     UNIT         ?DT?MAIN
            IDATA   000BH     0001H     UNIT         ?STACK
 
            * * * * * * *   C O D E   M E M O R Y   * * * * * * *
            CODE    0000H     0003H     ABSOLUTE   
            CODE    0003H     000CH     UNIT         ?C_C51STARTUP
            CODE    000FH     000CH     UNIT         ?PR?MAIN?MAIN
            CODE    001BH     0001H     UNIT         ?PR?_SUM?MAIN
****************************************************************************
这与上面的内存使用相同,在这个程序中通过反汇编,查看编译后的汇编程序可以发现,参数的传递通过通用寄存器完成,没有占用新的内存。编译器将其优 化的通用寄存器(寄存器一般传递3个参数,超过3个参数时,多余的参数通过分配空间地址的方式来访问。但是分配的内存空间包含了寄存器传递的3个参数在内 的所有参数的空间。详见《Parameter And Local Variable 》和《Parameter and Register》)和栈中(程序7),但是如果参数或局部变量过多,则情况就完全不同(程序6)。
再看下面的程序
*******************************************************************
//程序5
#include<reg51.h>
#define uint unsigned int
#define uchar unsigned char
uchar a;
uint b;
 
uint sum(uint c)
{
    uint d;
}
void main()
{
}
Program Size: data=16.0 xdata=0 code=21
TYPE    BASE      LENGTH    RELOCATION   SEGMENT NAME
            -----------------------------------------------------
 
            * * * * * * *   D A T A   M E M O R Y   * * * * * * *
            REG     0000H     0008H     ABSOLUTE     "REG BANK 0"
            DATA    0008H     0004H     UNIT         ?DT?_SUM?MAIN
            DATA    000CH     0003H     UNIT         ?DT?MAIN
            IDATA   000FH     0001H     UNIT         ?STACK
 
            * * * * * * *   C O D E   M E M O R Y   * * * * * * *
            CODE    0000H     0003H     ABSOLUTE   
            CODE    0003H     000CH     UNIT         ?C_C51STARTUP
            CODE    000FH     0005H     UNIT         ?PR?_SUM?MAIN
            CODE    0014H     0001H     UNIT         ?PR?MAIN?MAIN
******************************************************************
同样的程序,内部RAM的使用情况又发生了变化。函数未被调用,且参数与局部变量都没有使用。
源文件经过编译后形成obj文件,各个obj文件就是一个模块,每个模块中都含有代码段和数据段,也就是,代码在ROM占有多少CODE空间,数据在RAM里占用多少空间等信息。
obj(lib)文件然后经过l51.exe(bl51.exe),就是说把可执行代码模块根据连接定位参数地址上连接在一起();数据段也连接在 一起,在ram空间中分配.对ram空间的分配中就有一个连接过程"覆盖分析".调用一个c函数,就会为这个函数所使用的ram空间进行分配(一些局部变 量),这个函数返回时再回收分配给他的ram空间,根据函数互相之间的调用前后关系,编译器就可以时实的知道ram空间的使用情况(其中就存在一个函数重 入的问题),作为连接时ram空间分配的参数. 如果源文件中的函数(模块)从来没有被任何函数显示的调用(所谓非显示调用就是这段代码,连接器目前还不知道这段代码什么时候会被调用或是否会被调用), 连接时就会为它分配永远有效的ram空间(就象全局变量),不会被回收。
*******************************************************************
//程序6
#include<reg51.h>
#define uint unsigned int
#define uchar unsigned char
uchar a;
uint b;
 
uint sum2(uint e,uint f,uint g,uint j)
{
    uint i;
    i = e+f+g+j;
    return i;
}
void main()
{
    b = sum2(1,2,3,4);
}
Program Size: data=20.0 xdata=0 code=58
TYPE    BASE      LENGTH    RELOCATION   SEGMENT NAME
            -----------------------------------------------------
            * * * * * * *   D A T A   M E M O R Y   * * * * * * *
            REG     0000H     0008H     ABSOLUTE     "REG BANK 0"
            DATA    0008H     0008H     UNIT         _DATA_GROUP_
            DATA    0010H     0003H     UNIT         ?DT?MAIN
            IDATA   0013H     0001H     UNIT         ?STACK
**************************************************************
在上面的程序中如果将sum2中的j去掉,那么data = 12.0。
通过程序5和6可以看到,两个程序的M51文件中的蓝色部分的segement name的名称有很大的区别。_DATA_GROUP_是一个OVERALY GROUPS(覆盖组)。它是链接器产生的可覆盖的一个数据段。而上面的程序5中的?DT?_SUM?MAIN,则是一个函数段。
在Keil中对OVERALY GROUPS的解释为:
When performing overlay analysis, the linker creates groups of segments that are overlaid. The group name indicates the memory type of the variables that it includes.
Group Name
Segment
Prefix
Memory
Model
Description
_BIT_GROUP_
?BI?
All
Variables and arguments of type bit.
_DATA_GROUP_
?DT?
SMALL
Variables and arguments other than bit.
_PDATA_GROUP_
?PD?
COMPACT
Variables and arguments other than bit.
_XDATA_GROUP_
?XD?
LARGE
Variables and arguments other than bit.
When the linker overlays function data memory and creates a group, that groups appears in the linker map file's memory map section.
START     STOP      LENGTH    ALIGN  RELOC    MEMORY CLASS   SEGMENT NAME
======================================================================
* * * * * * * * * * *   D A T A   M E M O R Y   * * * * * * * * * * * * *
000000H   000007H   000008H   ---    AT..     DATA           "REG BANK 0"
000008H   00001AH   000013H   BYTE   UNIT     DATA           _DATA_GROUP_
00001BH   00001BH   000001H   BYTE   UNIT     IDATA          ?STACK
Groups are created based on the memory model of the function (which specifies the memory class where parameters and variables are stored) and on any variables defined with a specific memory space.
在keil生成的M51函数中有OVERLAY MAP OF MODULE,对程序中函数调用的覆盖有详细的说明。
//程序7
#define LEN 120
data uchar tt1[LEN];
idata uchar tt2[127];
void main()
{
    uchar i,j;
for(i = 0;  i < LEN; ++i )
    {
        j = i;
        tt1[j] = 0x55;
    }
}
变量i和j通过编译器的优化占用了通用寄存器,R0-8[8]+tt1[120]+tt2[127]+SP[1]共256字节;
而如果将程序7中j=i删掉。上面声明了uchar j,但是下面没有应用,因此编译器不知道该如何处理j,就让其占用了一个RAM空间不再存在通用寄存器中,出现了内存溢出。(有的编译器会将不用的变量自动删除)
局部变量占用通用寄存器,变量在声明时就被分配了空间;局部变量只有在被声明、赋值且被使用后才认为是局部变量被放置在通用寄存器中,否则被认为是全局变量;在循环中,R7中放置循环数。(自加)
由于data区的存取速度快,变量尽量的放在该区,但是由于idata可以访问整个256字节的RAM,如果data区变量较少,idata型的变量也会占有data区,减少了可直接访问的存储空间,因此在变量定义的时候尽量将idata型的变量定义在data型变量后。
uchar c1;
idata uchar c2;
uchar c3;
变量 c2 肯定会以间接寻址,但它有可能落在 data 区域,就浪费了一个可直接寻址的空间
变量的优化
(1)       将访问频率高的变量放在data区
(2)       提高内存的复用率。尽可能的利用局部变量,由于局部变量的存取速度快。在程序7中可以看到,i和j没有占用内存,子程序中使用内存数量不大的变量尽量定义为局部变量。
(3)       对于指针数组的定义,尽量指明存储类型。尽量使用无符号类型变量。8051不支持有符号数计算,需要通过其他的库来处理,大大降低了运行的速度,增加了内存的利用。
(4)       避免出现内存空洞。在M51中可以很清楚的看到内存的分配情况,如果全局变量和局部变量的分配不合理,有时会出现下面的情况:
0010H     0012H                  *** GAP ***
表示从0010开始有0012H个字节未利用。造成这种情况的原因是局变量太多、多个子程序中的局部变量数目差异太大、使用了寄存器切换但未充分利用
(5)避免出现未使用的变量或者函数。

谈谈Keil 中C51的内存分配与优化的更多相关文章

  1. Keil C51内存分配与优化

    C51的内存分配不同于一般的PC,内存空间有限,采用覆盖和共享技术.在Keil编译器中,经过编译后,会形成一个M51文件,在其内部可以详细的看到内存的分配情况. C51内存常见的两个误区: A.变量超 ...

  2. Java 中数组的内存分配

    Java 中数组的内存分配 1.Java 程序在运行时,需要在内存中分配空间.为了提高运算效率,就对空间进行了不同区域的划分,因为每一片区域都有特定的处理数据和内存管理方式. 2.数组基本概念 数组是 ...

  3. 第10课 C++中的动态内存分配

    C++中的动态内存分配 C语言是通过库函数来完成动态内存分配的,而C++是通过关键字从语言层面支持的. C语言中的malloc是基于字节来进行内存申请的,C++中是基于类型来进行的. delete加上 ...

  4. JAVA中堆栈和内存分配原理

    1.栈.堆 1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量 ...

  5. JAVA中堆栈和内存分配

    (一).栈.堆 1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制. 2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或 ...

  6. 从malloc中窥探Linux内存分配策略

        malloc函数是C/C++中常用内存分配库函数,本篇文章将以Linux平台上的malloc为剖析对象,深入了解分配一块内存的旅程. malloc入门      使用malloc,需要包含头文 ...

  7. 解析STL中典型的内存分配

    1 vector 在C++中使用vector应该是非常频繁的,但是你是否知道vector在计算内存分配是如何么? 在c++中vector是非常类似数组,但是他比数组更加灵活,这就表现在他的大小是可以自 ...

  8. JAVA中堆栈和内存分配详解(摘抄)

    在Java中,有六个不同的地方可以存储数据: 1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制. 2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存 ...

  9. C#中字符串的内存分配与驻留池

    完全引用http://www.cnblogs.com/instance/archive/2011/05/24/2056091.html 驻留池:是一张记录了所有在代码中使用字面量声明的字符串实例的引用 ...

随机推荐

  1. 20155211 课下测试ch12补做

    20155211 课下测试ch12补做 有关线程图,下面说法正确的是() A.图的原点表示没有任何线程完成一条指令的初始状态 B.向右向上是合法的转换 C.向左向下是合法的转换 D.对角线是合法的转换 ...

  2. 信息安全铁人三项赛--资质赛writeup

    [博客目录] 工具 Burp Suite stegsolve.jar 十六进制编辑器 赛题 第一题 第二题 第三题 第四题 第五题 第六题 1- 工具: 1.1- Burp Suite 一款可以进行再 ...

  3. Velocity学习4

    Velocity是一个基于java的模板引擎(template engine).它允许任何人仅仅简单的使用模板语言(template language)来引用由java代码定义的对象. 当Veloci ...

  4. 一维码UPC E简介及其解码实现(zxing-cpp)

    UPC(Universal Product Code)码是最早大规模应用的条码,其特性是一种长度固定.连续性的条  码,目前主要在美国和加拿大使用,由于其应用范围广泛,故又被称万用条码. UPC码仅可 ...

  5. HBase数据访问的一些常用方式

    类型 特点 场合 优缺点分析 Native Java API 最常规和高效的访问方式 适合MapReduce作业并行批处理HBase表数据 Hbase Shell HBase的命令行工具,最简单的访问 ...

  6. 11 基于django的图书管理系统 多表

    1.需求 作业需求:1.列出图书列表.出版社列表.作者列表2.点击作者,会列出其出版的图书列表3.点击出版社,会列出旗下图书列表4.可以创建.修改.删除 图书.作者.出版社 踩分点:1.满足需求1,2 ...

  7. python爬虫之图片懒加载、selenium和phantomJS

    一.什么是图片懒加载 在网页中,常常需要用到图片,而图片需要消耗较大的流量.正常情况下,浏览器会解析整个HTML代码,然后从上到下依次加载<img src="xxx"> ...

  8. [转载]在Windows下为PHP5.6安装redis扩展和memcached扩展

    一.php安装redis扩展   1.使用phpinfo()函数查看PHP的版本信息,这会决定扩展文件版本       2.根据PHP版本号,编译器版本号和CPU架构, 选择php_redis-2.2 ...

  9. linux执行命令返回码释义

    Linux 操作系统错误代码解释 0.错误代码1-10 OS error code 0: Success 操作系统错误代码0:成功 OS error code 1: Operation not per ...

  10. Centos7 安装与破解 Confluence 6.7.1

    1.1硬件需求建议: CPU:32/64 bit 2.27GHz双核心以上之CPU: 内存:8GB以上: 硬盘:300GB,7200转以上: 建议数据库.Confluence等各自独立一台服务器(本测 ...