300. Longest Increasing Subsequence_算法有误
300. Longest Increasing Subsequence
300. Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Input: [,,,,,,,]
Output:
Explanation: The longest increasing subsequence is [,,,], therefore the length is . Note: There may be more than one LIS combination, it is only necessary for you to return the length.
Your algorithm should run in O(n2) complexity. Follow up: Could you improve it to O(n log n) time complexity?
https://www.felix021.com/blog/read.php?entryid=1587&page=3&part=1 感谢作者!
标题:最长递增子序列 O(NlogN)算法
出处:Blog of Felix021
时间:Wed, 13 May 2009 04:15:10 +0000
作者:felix021
地址:https://www.felix021.com/blog/read.php?1587
内容:
今天回顾WOJ1398,发现了这个当时没有理解透彻的算法。
看了好久好久,现在终于想明白了。
试着把它写下来,让自己更明白。
最长递增子序列,Longest Increasing Subsequence 下面我们简记为 LIS。
排序+LCS算法 以及 DP算法就忽略了,这两个太容易理解了。
假设存在一个序列d[1..9] = 2 1 5 3 6 4 8 9 7,可以看出来它的LIS长度为5。
下面一步一步试着找出它。
我们定义一个序列B,然后令 i = 1 to 9 逐个考察这个序列。
此外,我们用一个变量Len来记录现在最长算到多少了
首先,把d[1]有序地放到B里,令B[1] = 2,就是说当只有1一个数字2的时候,长度为1的LIS的最小末尾是2。这时Len=1
然后,把d[2]有序地放到B里,令B[1] = 1,就是说长度为1的LIS的最小末尾是1,d[1]=2已经没用了,很容易理解吧。这时Len=1
接着,d[3] = 5,d[3]>B[1],所以令B[1+1]=B[2]=d[3]=5,就是说长度为2的LIS的最小末尾是5,很容易理解吧。这时候B[1..2] = 1, 5,Len=2
再来,d[4] = 3,它正好加在1,5之间,放在1的位置显然不合适,因为1小于3,长度为1的LIS最小末尾应该是1,这样很容易推知,长度为2的LIS最小末尾是3,于是可以把5淘汰掉,这时候B[1..2] = 1, 3,Len = 2
继续,d[5] = 6,它在3后面,因为B[2] = 3, 而6在3后面,于是很容易可以推知B[3] = 6, 这时B[1..3] = 1, 3, 6,还是很容易理解吧? Len = 3 了噢。
第6个, d[6] = 4,你看它在3和6之间,于是我们就可以把6替换掉,得到B[3] = 4。B[1..3] = 1, 3, 4, Len继续等于3
第7个, d[7] = 8,它很大,比4大,嗯。于是B[4] = 8。Len变成4了
第8个, d[8] = 9,得到B[5] = 9,嗯。Len继续增大,到5了。
最后一个, d[9] = 7,它在B[3] = 4和B[4] = 8之间,所以我们知道,最新的B[4] =7,B[1..5] = 1, 3, 4, 7, 9,Len = 5。
于是我们知道了LIS的长度为5。
!!!!! 注意。这个1,3,4,7,9不是LIS,它只是存储的对应长度LIS的最小末尾。有了这个末尾,我们就可以一个一个地插入数据。虽然最后一个d[9] = 7更新进去对于这组数据没有什么意义,但是如果后面再出现两个数字 8 和 9,那么就可以把8更新到d[5], 9更新到d[6],得出LIS的长度为6。
然后应该发现一件事情了:在B中插入数据是有序的,而且是进行替换而不需要挪动——也就是说,我们可以使用二分查找,将每一个数字的插入时间优化到O(logN)~~~~~于是算法的时间复杂度就降低到了O(NlogN)~!
代码如下:
//在非递减序列 arr[s..e](闭区间)上二分查找第一个大于等于key的位置,如果都小于key,就返回e+1
int upper_bound(int arr[], int s, int e, int key)
{
int mid;
if (arr[e] <= key)
return e + ;
while (s < e)
{
mid = s + (e - s) / ;
if (arr[mid] <= key)
s = mid + ;
else
e = mid;
}
return s;
} int LIS(int d[], int n)
{
int i = , len = , *end = (int *)alloca(sizeof(int) * (n + ));
end[] = d[]; //初始化:长度为1的LIS末尾为d[0]
for (i = ; i < n; i++)
{
int pos = upper_bound(end, , len, d[i]); //找到插入位置
end[pos] = d[i];
if (len < pos) //按需要更新LIS长度
len = pos;
}
return len;
}
Generated by Bo-blog 2.1.0
300. Longest Increasing Subsequence_算法有误的更多相关文章
- [LeetCode] 300. Longest Increasing Subsequence 最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...
- 300. Longest Increasing Subsequence
题目: Given an unsorted array of integers, find the length of longest increasing subsequence. For exam ...
- Leetcode 300 Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- leetcode@ [300] Longest Increasing Subsequence (记忆化搜索)
https://leetcode.com/problems/longest-increasing-subsequence/ Given an unsorted array of integers, f ...
- [leetcode]300. Longest Increasing Subsequence最长递增子序列
Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...
- 【leetcode】300.Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- 300. Longest Increasing Subsequence(LIS最长递增子序列 动态规划)
Given an unsorted array of integers, find the length of longest increasing subsequence. For example, ...
- [leetcode] 300. Longest Increasing Subsequence (Medium)
题意: 求最长增长的子序列的长度. 思路: 利用DP存取以i作为最大点的子序列长度. Runtime: 20 ms, faster than 35.21% of C++ online submissi ...
- LeetCode 300. Longest Increasing Subsequence最长上升子序列 (C++/Java)
题目: Given an unsorted array of integers, find the length of longest increasing subsequence. Example: ...
随机推荐
- 从汉诺塔游戏理解python递归函数
汉诺塔游戏规则: 有三根相邻的柱子,标号为A,B,C,A柱子上从下到上按金字塔状叠放着n个不同大小的圆盘,现在把所有盘子一个一个移动到柱子B上,并且每次移动同一根柱子上都不能出现大盘子在小盘子上方 图 ...
- Python更新库
查看系统里过期的python库,可以用pip命令 [root@vnode33 sim-enb-sgi]# pip list #列出所有安装的库 Package Version ------------ ...
- EF三种编程方式详细图文教程(C#+EF)之Model First
Model First Model First我们称之为“模型优先”,这里的模型指的是“ADO.NET Entity Framework Data Model”,此时你的应用并没有设计相关数据库,在V ...
- php 把数字转化为大写中文
PHP 数字转大写中文 PHP入门小菜鸟一枚.下午要求写一个把数字转成大写中文的脚本,百度了一波,几十个博客和网站都是用的那四个代码,第一个运行不了,第二个有问题,不合要求,第三个第四个太长,懒得看, ...
- JAVA自学日记——Part Ⅰ.
和C++比较相似,Java同样是面向对象的设计语言,在基础的语句上有一些不大的差别,经过两天的学习,大概的了解了在eclipse中如何进行简单的编程,解决一些简单的问题,诸如在学习C时做过的“字符串倒 ...
- Nim游戏学习笔记
- 80X86计算机组织
计算机主要由运算器.控制器.存储器.和输入输出设备构成. 主频: 主频是指芯片所用的主时钟频率,它直接影响计算机的运行速度,由于处理器体系结构的差别,同样的主频可能产生不同的计算速度,但主频仍然是反映 ...
- final,finally和 finalize的区别
中等区别: 虽然这三个单词在Java中都存在,但是并没有太多关联: final:java中的关键字,修饰符. 1.如果一个类被声明为final,就意味着它不能再派生出新的子类,不能作为父类被继承.因 ...
- js判断浏览器语言实现网站国际化
一般国际化的网站至少是有中.英文两种语言的,然后就是在不同的语言环境下使用不同的语言页面. 1.实现原理 一般实现这种功能的方法,无非就是两种, 第一种,判断浏览器语言类型: 第二种,判断ip所属国家 ...
- DAY6-Flask项目
1.ViewModel:处理原始数据:裁剪修饰合并 2.访问静态资源 默认情况下,访问的路径为app根目录的下的static文件,为什么说app是根目录而不是fisher.py下,因为在实例化对象的时 ...