【LNOI2014】LCA
题面
题解
考察\(dep[\mathrm{LCA}(i, x)]\)的性质,发现它是\(i\)和\(x\)的链交的长度。
那么对每个\(i\)所在的链打一个区间加标记,询问时算一下\(x\)所在的链的区间和即可。
如果有\(l \leq i \leq r\)的限制,就进行离线处理即可。
代码
好久之前的代码,有点丑见谅。
#include<bits/stdc++.h>
#define RG register
#define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
#define for_edge(i, x) for(RG int i=head[x];i;i=e[i].next)
#define clear(x, y) memset(x, y, sizeof(x));
using namespace std;
template<typename T = int>
inline T read()
{
T data=0, w=1;
char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9')) ch=getchar();
if(ch=='-') w=-1, ch=getchar();
while(ch>='0'&&ch<='9') data=(data<<3)+(data<<1)+(ch^48), ch=getchar();
return data*w;
}
const int maxn(50010), mod(201314);
struct edge { int next, to; } e[maxn];
int head[maxn], e_num, n, q;
inline void add_edge(int from, int to) { e[++e_num]={head[from], to}; head[from]=e_num; }
int fa[maxn], heavy[maxn], size[maxn];
void dfs(int x)
{
size[x]=1;
int _max=0;
for_edge(i, x)
{
int to=e[i].to; dfs(to);
size[x]+=size[to];
if(size[to]>_max) _max=size[to], heavy[x]=to;
}
}
int pos[maxn], belong[maxn], cnt_node;
void dfs(int x, int chain)
{
pos[x]=++cnt_node;
belong[x]=chain;
int k=heavy[x];
if(!k) return;
dfs(k, chain);
for_edge(i, x)
{
int to=e[i].to;
if(to==k) continue;
dfs(to, to);
}
}
int sum[maxn<<2], lazy[maxn<<2];
#define son(i) ((root<<1)|i)
inline void pushdown(int root, int l, int r)
{
if(l==r) lazy[root]=0;
if(!lazy[root]) return;
int mid(l+r>>1);
sum[son(0)]+=(mid-l+1)*lazy[root];
sum[son(1)]+=(r-mid)*lazy[root];
lazy[son(0)]+=lazy[root];
lazy[son(1)]+=lazy[root];
lazy[root]=0;
}
inline void update(int l, int r, int root=1, int nl=1, int nr=cnt_node)
{
if(nr<l || nl>r) return;
if(l<=nl && nr<=r)
{
sum[root]+=nr-nl+1;
lazy[root]++;
return;
}
int mid(nl+nr>>1);
pushdown(root, nl, nr);
update(l, r, son(0), nl, mid); update(l, r, son(1), mid+1, nr);
sum[root]=sum[son(0)]+sum[son(1)];
}
inline void update_chain(int x) { while(x) update(pos[belong[x]], pos[x]), x=fa[belong[x]]; }
inline int query(int l, int r, int root=1, int nl=1, int nr=cnt_node)
{
if(nr<l || nl>r) return 0;
if(l<=nl && nr<=r) return sum[root];
int mid(nl+nr>>1);
pushdown(root, nl, nr);
return query(l, r, son(0), nl, mid)+query(l, r, son(1), mid+1, nr);
}
inline int query_chain(int x)
{
int ans=0;
while(x) ans+=query(pos[belong[x]], pos[x]), x=fa[belong[x]];
return ans;
}
vector<int> le[maxn], ri[maxn];
int ans[maxn], que[maxn];
int main()
{
n=read(); q=read();
for(RG int i=2;i<=n;i++) fa[i]=read()+1, add_edge(fa[i], i);
dfs(1); dfs(1, 1);
RG int l, r, z;
for(RG int i=1;i<=q;i++) l=read(), r=read(), z=read(), le[l].push_back(i), ri[r+1].push_back(i), que[i]=z+1;
for(RG int i=1;i<=n;i++)
{
update_chain(i);
for(RG auto j : ri[i]) (ans[j]+=query_chain(que[j]))%=mod;
for(RG auto j : le[i]) ans[j]=(ans[j]-query_chain(que[j])+mod)%mod;
}
for(RG int i=1;i<=q;i++) printf("%d\n", (ans[i]+mod)%mod);
return 0;
}
【LNOI2014】LCA的更多相关文章
- bzoj3626【LNOI2014】LCA
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MB Submit: 1266 Solved: 448 [Submit][Stat ...
- 【BZOJ3626】LCA(树链剖分,Link-Cut Tree)
[BZOJ3626]LCA(树链剖分,Link-Cut Tree) 题面 Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1. ...
- 【LNOI2014】【BZOJ3626】NOIp2018模拟(三) LCA
Description 给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设$dep[i]$表示点i的深度,$lca(i,j)$表示i与j的最近公共祖 ...
- 【P4211 LNOI2014】LCA——树链剖分 +询问离线
(7.16晚)更完先在B站颓一会儿-- --------------------------------------------------------------- (以下为luogu题面) 题目描 ...
- 【BZOJ-3626】LCA 树链剖分
3626: [LNOI2014]LCA Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1428 Solved: 526[Submit][Status ...
- 【Homework】LCA&RMQ
我校是神校,作业竟然选自POJ,难道不知道“珍爱生命 勿刷POJ”么? 所有注明模板题的我都十分傲娇地没有打,于是只打了6道题(其实模板题以前应该打过一部分但懒得找)(不过感觉我模板还是不够溜要找个时 ...
- 【模板】LCA
代码如下 #include <bits/stdc++.h> using namespace std; const int maxn=5e5+10; inline int read(){ i ...
- 【BZOJ3626】LCA(树上差分,树链剖分)
题意:给出一个n个节点的有根树(编号为0到n-1,根节点为0).一个点的深度定义为这个节点到根的距离+1.设dep[i]表示点i的深度,LCA(i,j)表示i与j的最近公共祖先.有q次询问,每次询问给 ...
- 【模板】Lca倍增法
Codevs 1036 商务旅行 #include<cstdio> #include<cmath> #include<algorithm> using namesp ...
随机推荐
- “拒绝了对对象数据库的 EXECUTE 权限”之解决
“拒绝了对对象'aspnet_CheckSchemaVersion'的 EXECUTE 权限”之解决 [错误状态] “/XXX”应用程序中的服务器错误. ----------------------- ...
- UIWindow,UINavigationController与UIViewController之间的关系
UIWindow,UINavigationController与UIViewController之间的关系 虽然每次你都用UINavigationController与UIWindow,但你不一定知道 ...
- 用字典给Model赋值
用字典给Model赋值 此篇教程讲述通过runtime扩展NSObject,可以直接用字典给Model赋值,这是相当有用的技术呢. 源码: NSObject+Properties.h 与 NSObje ...
- (转)Matlab增加块注释
1)方法一选中你要加注释的内容,然后选择工具菜单“text|comment”就可以了,如果要把注释变为语句,同样选中要转变的语句,然后用鼠标选择“text|uncomment”就可以了.用键盘的快捷键 ...
- python字典去重脚本
#!/usr/bin/env python # encoding: utf-8 #字典去重小代码 import sys import os import platform try: pass exce ...
- ZT eoe android4.2 Bluetooth记录01-结构和代码分布
android4.2 Bluetooth记录01-结构和代码分布 作者:cnhua5更新于 08月21日访问(697)评论(2) 在android4.2中,Google更换了android的蓝牙协议栈 ...
- input file实现多选,限制文件上传类型,图片上传前预览功能
限制上传类型 & 多选:① accept 属性只能与 <input type="file" /> 配合使用.它规定能够通过文件上传进行提交的文件类型. ② mu ...
- 关于安装AndroidStudio中遇见的问题
安装AndroidStudio: 最近,准备了解下Android,就买了本<第一行代码Android:第二版>, 最开始就是安装AndroidStudio,刚开始以为安装的挺容易的,结果… ...
- 利用Jquey.hover来实现 鼠标移入出现删除按钮,鼠标移出删除消失
Html代码 <div class="box"><div class="bmbox" onclick="$('.box:first' ...
- 什么是AOP-面向交叉业务编程
一.AOP(Aspect-oriented programming,面向切面编程): 什么是AOP? 定义:将程序中的交叉业务逻辑提取出来,称之为切面.将这些切面动态织入到目标对象,然后生成一个代理对 ...