字符串

Tags:Noip前的大抱佛脚

经验

用FFT求解字符串匹配问题

  • 一一对应

把其中一个\(Reverse\)后,对于每个字符跑一遍FFT,打上\(Tag\)

如果在某个位置上有串长个\(Tag\)那便是匹配上了一处

  • 模糊匹配

\(Fuzzy Search\) 在跑\(FFT\)前把模糊门限值的区间内全部置为1,然后同样的操作

两(多)串DP时状态合并

插入AC自动机,老套路了

最长公共子序列转LIS

求两个串的最长公共子序列,把第二个串的每个值映射到第一个串上 该值的位置

然后对第二个串求LIS即可(最长公共子串就是第二个串的最长连续段)

位运算最大值

异或最大值:建Trie贪心

与最大值:建Trie贪心(1的儿子siz大于2则走)/高维前缀和逐位贪心

或最大值:高维前缀和逐位贪心

但是求(x+B)^A的最大值呢(SCOI2016美味)(当然&操作也是一样的,这种题通常值域很小)

同样贪心地做

开值域线段树,贪心到某一位,需要该位为0或者1,则对应地可以算出x的范围,查询是否有在这个范围之内的x即可

挂链哈希

期望\(O(1)\),当然支持查询多个关键字

const int Mo=YYB;
struct HashTable
{
struct Line{int next,val;}a[Mo];
int head[Mo],cnt;
void reset() {memset(head,0,sizeof(head));cnt=0;}
void Add(int p,int val) {a[++cnt]=(Line){head[p],val};head[p]=cnt;}
int Query(int x)
{
for(int i=head[x%Mo];i;i=a[i].next)
if(a[i].val==x) return 1;return 0;
}
}Hash;

哈希处理回文串

正反哈希前缀和即可求出区间哈希值,然后查询起点到回文中心的正哈希和回文中心到终点的反哈希即可

树哈希

例:一棵无根树的本质不同的独立集个数(\(k\)棵相同子树方案为\(x\)则乘一个可重组合)

字符串模板库

KMP

【模板】KMP字符串匹配

用于两串匹配问题,做法是对子串求next后匹配母串,复杂度\(O(n+m)\)

const int N=1e6+10;
char s1[N],s2[N];
int nxt[N];
int main()
{
scanf("%s%s",s1+1,s2+1);
int l1=strlen(s1+1),l2=strlen(s2+1);
for(int i=2;i<=l2;i++)
{
int j=nxt[i-1];
while(j&&s2[j+1]!=s2[i]) j=nxt[j];
nxt[i]=(s2[j+1]==s2[i])+j;
}
for(int i=1,j=0;i<=l1;i++)
{
while(j&&s2[j+1]!=s1[i]) j=nxt[j];
if(s2[j+1]==s1[i]) j++;
if(j==l2) printf("%d\n",i-l2+1),j=nxt[j];
}
for(int i=1;i<=l2;i++) printf("%d ",nxt[i]);
return puts(""),0;
}

最小循环表示

工艺

\(O(n)\)求一个环从某点断开按一定方向形成的字典序最小的链

int i,j=2,k,l,p,s[610000];
int main()
{
cin>>l;for(i=1;i<=l;i++) cin>>s[i],s[i+l]=s[i];
for(i=1;j<=l&&i<=l&&k<=l;)
{
if(s[i+k]==s[j+k]) {k++;continue;}
s[i+k]<s[j+k]?j+=k+1:i+=k+1;
if(i==j) i++;k=0;
}
for(;p<l;p++) cout<<s[min(i,j)+p]<<" ";
}

Mancher

【模板】manacher算法

求出以每个位置为中心的最长回文串,复杂度\(O(n)\),证明:每次操作要么不动\(while\),要么给两个单调的指针至少\(+1\)


const int N=3e7+10;
char s[N],t[N];
int l,p[N],R,C,Ans;
int main()
{
scanf("%s",t+1);
for(int i=1,len=strlen(t+1);i<=len;i++)
s[++l]='#',s[++l]=t[i];s[++l]='#';
for(int i=1;i<=l;i++)
{
p[i]=i<=R?min(p[C*2-i],R-i):1;
while(s[i+p[i]]==s[i-p[i]]&&i+p[i]<=l&&i-p[i]>=1) p[i]++;
if(i+p[i]-1>R) R=i+p[i]-1,C=i;
Ans=max(Ans,p[i]-1);
}
cout<<Ans<<endl;
}

AC自动机

【模板】AC自动机(加强版)

用于处理多串匹配单串等多串问题,复杂度\(O(n*26)\)

方式是先建\(Trie\),求出\(fail\)指针后建成\(Trie\)图

int n,node,fail[N],ch[N][26];
queue<int> Q;
void Insert(char *s,int id)
{
int x=0,l=strlen(s+1);
for(int i=1;i<=l;i++)
{
int &p=ch[x][s[i]-'a'];
if(!p) p=++node;x=p;
}
}
void Get_fail()
{
for(int i=0;i<26;i++) if(ch[0][i]) Q.push(ch[0][i]);
while(!Q.empty())
{
int x=Q.front();Q.pop();
for(int i=0;i<26;i++)
if(ch[x][i]) fail[ch[x][i]]=ch[fail[x]][i],Q.push(ch[x][i]);
else ch[x][i]=ch[fail[x]][i];
}
}

后缀数组

【模板】后缀排序

用于处理字符串后缀的东西(不过这东西Noip不会考,省选题倒是经常出现)

复杂度\(O(nlogn)\),基于一种倍增和桶排的思想对后缀排序


const int N=1e6+10;
int m=300,t[N],x[N],y[N],rk[N],h[N],SA[N],l;char s[N];
int cmp(int i,int j,int k) {return y[i]==y[j]&&y[i+k]==y[j+k];}
void Sort()
{
for(int i=1;i<=m;i++) t[i]=0;
for(int i=1;i<=l;i++) t[x[i]]++;
for(int i=1;i<=m;i++) t[i]+=t[i-1];
for(int i=l;i>=1;i--) SA[t[x[y[i]]]--]=y[i];
}
void Get_SA()
{
for(int i=1;i<=l;i++) x[i]=s[i],y[i]=i;Sort();
for(int k=1,p=0;k<=l;k<<=1)
{
for(int i=l-k+1;i<=l;i++) y[++p]=i;
for(int i=1;i<=l;i++) if(SA[i]>k) y[++p]=SA[i]-k;
Sort();swap(x,y);x[SA[1]]=p=1;
for(int i=2;i<=l;i++) x[SA[i]]=cmp(SA[i],SA[i-1],k)?p:++p;
if(p==l) break;m=p;p=0;
}
for(int i=1;i<=l;i++) rk[SA[i]]=i;
for(int i=1,j=0;i<=l;i++)
{
while(s[i+j]==s[SA[rk[i]-1]+j]) j++;
h[rk[i]]=j;if(j) j--;
}
}
int main()
{
scanf("%s",s+1);l=strlen(s+1);Get_SA();
for(int i=1;i<=l;i++) printf("%d ",SA[i]);
}

后缀自动机

【模板】后缀自动机

用于处理子串的问题。这家伙比SA好写复杂度还优秀适用范围还广些

不过Noip还是不会考,复杂度\(O(n)\)


const int N=2e6+10;
int l,lst=1,node=1,t[N],A[N],len[N],fa[N];
int ch[N][26],siz[N];char s[N];
void Extend(int c)
{
int f=lst,p=++node;lst=p;
len[p]=len[f]+1;siz[p]=1;
while(f&&!ch[f][c]) ch[f][c]=p,f=fa[f];
if(!f) {fa[p]=1;return;}
int x=ch[f][c],y=++node;
if(len[f]+1==len[x]) {fa[p]=x;node--;return;}
len[y]=len[f]+1;fa[y]=fa[x];fa[x]=fa[p]=y;
memcpy(ch[y],ch[x],sizeof(ch[y]));
while(f&&ch[f][c]==x) ch[f][c]=y,f=fa[f];
}
int main()
{
scanf("%s",s+1);l=strlen(s+1);
for(int i=1;i<=l;i++) Extend(s[i]-'a');
}

Noip前的大抱佛脚----字符串的更多相关文章

  1. Noip前的大抱佛脚----文章索引

    Noip前的大抱佛脚----赛前任务 Noip前的大抱佛脚----考场配置 Noip前的大抱佛脚----数论 Noip前的大抱佛脚----图论 Noip前的大抱佛脚----动态规划 Noip前的大抱佛 ...

  2. Noip前的大抱佛脚----Noip真题复习

    Noip前的大抱佛脚----Noip真题复习 Tags: Noip前的大抱佛脚 Noip2010 题目不难,但是三个半小时的话要写四道题还是需要码力,不过按照现在的实力应该不出意外可以AK的. 机器翻 ...

  3. Noip前的大抱佛脚----一些思路

    目录 一些思路 序列 函数问题 网格图 删除和询问 乘法问题 顺序问题 最值问题 研究成果 数论分块套数论分块的复杂度 一些思路 Tags:Noip前的大抱佛脚 序列 线段树(当然还要有主席树啊!) ...

  4. Noip前的大抱佛脚----数论

    目录 数论 知识点 Exgcd 逆元 gcd 欧拉函数\(\varphi(x)\) CRT&EXCRT BSGS&EXBSGS FFT/NTT/MTT/FWT 组合公式 斯特林数 卡塔 ...

  5. Noip前的大抱佛脚----图论

    目录 图论 知识点 二分图相关 DFS找环 并查集维护二分图 二分图匹配的不可行边 最小生成树相关 最短路树 最短路相关 负环 多源最短路 差分约束系统 01最短路 k短路 网络流 zkw费用流 做题 ...

  6. Noip前的大抱佛脚----数据结构

    目录 数据结构 知识点及其应用 线段树 神奇标记 标记不下放 并查集 维护二分图 维护后继位置 堆 可并堆的可持久化 dsu on tree 方式&原理 适用范围 单调队列 尺取合法区间 模板 ...

  7. Noip前的大抱佛脚----赛前任务

    赛前任务 tags:任务清单 前言 现在xzy太弱了,而且他最近越来越弱了,天天被爆踩,天天被爆踩 题单不会在作业部落发布,所以可(yi)能(ding)会不及时更新 省选前的练习莫名其妙地成为了Noi ...

  8. Noip前的大抱佛脚----根号对数算法

    根号算法 分块 数列分块入门九题(hzwer) 入门题1,2,3,4,5,7 问题:给一段区间打上标记后单点查询 解法:主要是每块维护一些标记,计算答案等,此类分块较为简单 注意:块大小一般为\(\s ...

  9. Noip前的大抱佛脚----奇技淫巧

    STL函数 set set查找前驱后继 multiset<int>::iterator iter; S.insert(x); iter=S.find(x);//返回迭代器 iter--;/ ...

随机推荐

  1. 3.如何在Maven项目中引入自己的jar包

    1.一般情况下jar包都可以使用pom.xml来配置管理,但也有一些时候,我们项目中使用了一个内部jar文件,但是这个文件我们又没有开放到maven库中. 我们会将文件放到我们项目中.(以下以java ...

  2. SQL server数据库压缩空间

    SQL server数据库,在手动删除或者自动删除数据后,查看数据库物理文件发现占用空间并没有释放,果断采用万能的重启.(反正是自己用的一个服务器,随便玩.如果不是只有自己用的服务器,还是建议让运维或 ...

  3. 官方推荐的MySQL参数设置值

    这oracle官方推荐的在OLTP环境下,MySQL参数设置的最佳实践. 下面的参数设置,对系统的性能会很有帮助.但是建议大家还是结合实际情况使用. APPLIES TO: MySQL Server ...

  4. 转:.net设计模式之单例模式

    原文地址:http://terrylee.cnblogs.com/archive/2005/12/09/293509.html 概述 Singleton模式要求一个类有且仅有一个实例,并且提供了一个全 ...

  5. 使用xtrabackup不停服务做从库

    一.安装xtrabackup 1.YUM安装,下载percona源: yum install http://www.percona.com/downloads/percona-release/redh ...

  6. Linux系统设置运行级别

    设置运行级别 查看开机加载级别:7个级别 规范场景默认都是3         cat /etc/inittab --> 系统开机启动加载的文件,可以设置运行级别 # Default runlev ...

  7. Windows程序设计(Charles Petzold)HELLOWIN程序实现

    /*-------------------------------------------------------------- HELLOWIN.C--DisPlays "Hello, W ...

  8. Memorize and recite an important historical speech

    Memorize and recite an important historical speech memorize['memәraiz]v.[亦作memorise] 记住, 记忆 historic ...

  9. 使用Oracle的instr函数与索引配合提高模糊查询的效率

    使用Oracle的instr函数与索引配合提高模糊查询的效率 一般来说,在Oracle数据库中,我们对tb表的name字段进行模糊查询会采用下面两种方式:1.select * from tb wher ...

  10. 查看oracle数据库版本

    1. 登录sysdba用户 sqlplus / as sysdba 2. 方法一:v$version SQL> select * from v$version; 3.  方法二:product_ ...