题目大意:给你$n$个不大于$m$的质数,求有多少种方案,使得这$n$个数的异或和为$0$。其中,$n≤10^9,m≤10^5$。

考虑正常地dp,我们用$f[i][j]$表示前$i$个数的异或和为$j$的方案数。

我们构造一个数组$g$,若i为不大于$m$的质数,则$g[i]=1$,否则为$0$。

那么显然,$f[i][j]=\sum f[i-1][k]\times g[j \oplus k]$。  其中$j \oplus k$表示$j$和$k$的按位异或。

然后我们不难发现,$f[i]为f[i-1]$与$g$的异或卷积。

则$f[n]$为$g$的$n$次异或卷积,答案显然为$f[n][0]$。

我们用$FWT$将$g$变成点值表达式,然后做快速幂,最后再插值回来,就得到答案了。

时间复杂度为$O(m\ log\ m+m\ log\ n)$。

 #include<bits/stdc++.h>
#define M 131072
#define L long long
#define MOD 1000000007
using namespace std;
int b[M]={},pri[M]={},use=;
void init(){
for(int i=;i<M;i++){
if(!b[i]) pri[++use]=i;
for(int j=;j<=use&&i*pri[j]<M;j++){
b[i*pri[j]]=;
if(i%pri[j]==) break;
}
}
}
L pow_mod(L x,int k){
L ans=;
while(k){
if(k&) ans=ans*x%MOD;
x=x*x%MOD; k>>=;
}
return ans;
}
void FWT(L a[],int n,int on){
for(int i=;i<n;i<<=)
for(int j=;j<n;j++)
if(i&j){
L w=a[i^j];
a[i^j]=(w+a[j])%MOD;
a[j]=(w-a[j]+MOD)%MOD;
}
if(on==-){
L inv=pow_mod(n,MOD-);
for(int i=;i<n;i++) a[i]=a[i]*inv%MOD;
}
}
L g[M]={},ans[M]={};
int main(){
init();
int t,n;
while(cin>>t>>n){
int len=; while(len<=n) len<<=;
for(int i=;i<=n;i++) if(b[i]==) g[i]=;
FWT(g,len,); memcpy(ans,g,M<<); t--;
while(t){
if(t&) for(int i=;i<len;i++) ans[i]=ans[i]*g[i]%MOD;
t>>=; for(int i=;i<len;i++) g[i]=g[i]*g[i]%MOD;
}
FWT(ans,len,-);
printf("%lld\n",ans[]);
memset(g,,len<<); memset(ans,,len<<);
}
}

【bzoj4589】Hard Nim FWT+快速幂的更多相关文章

  1. BZOJ4589: Hard Nim(FWT 快速幂)

    题意 题目链接 Sol 神仙题Orzzzz 题目可以转化为从\(\leqslant M\)的质数中选出\(N\)个\(xor\)和为\(0\)的方案数 这样就好做多了 设\(f(x) = [x \te ...

  2. BZOJ4589 Hard Nim FWT 快速幂 博弈

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4589.html 题目传送门 - BZOJ4589 题意 有 $n$ 堆石子,每一堆石子的取值为 $2$ ...

  3. [bzoj4589]Hard Nim(FWT快速沃尔什变化+快速幂)

    题面:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 题意 求选恰好n个数,满足每个数都是不大于m的质数,且它们的异或和为0的方案数. 解法 ...

  4. 【51Nod1773】A国的贸易 FWT+快速幂

    题目描述 给出一个长度为 $2^n$ 的序列,编号从0开始.每次操作后,如果 $i$ 与 $j$ 的二进制表示只差一位则第 $i$ 个数会加上操作前的第 $j$ 个数.求 $t$ 次操作后序列中的每个 ...

  5. BZOJ4589 Hard Nim(快速沃尔什变换FWT)

    这是我第一道独立做出来的FWT的题目,所以写篇随笔纪念一下. (这还要纪念,我太弱了) 题目链接: BZOJ 题目大意:两人玩nim游戏(多堆石子,每次可以从其中一堆取任意多个,不能操作就输).$T$ ...

  6. bzoj 4589: Hard Nim【线性筛+FWT+快速幂】

    T了两次之后我突然意识到转成fwt形式之后,直接快速幂每次乘一下最后再逆回来即可,并不需要没此次都正反转化一次-- 就是根据nim的性质,先手必输是所有堆个数异或和为0,也就变成了一个裸的板子 #in ...

  7. bzoj4589: Hard Nim fwt

    题意:求n个m以内的素数亦或起来为0的方案数 题解:fwt板子题,先预处理素数,把m以内素数加一遍(下标),然后fwt之后快速幂即可,在ifwt之后a[0]就是答案了 /*************** ...

  8. BZOJ4589 Hard Nim(快速沃尔什变换模板)

    终于抽出时间来学了学,比FFT不知道好写到哪里去. #include <cstdio> typedef long long ll; ,p=1e9+; int k,m,n,a[N],pi[N ...

  9. BZOJ 4589 Hard Nim(FWT+博弈论+快速幂)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4589 [题目大意] 有n堆石子,每堆都是m以内的质数,请问后手必胜的局面有几种 [题解 ...

随机推荐

  1. 2018.06.29 洛谷P1505 [国家集训队]旅游(树链剖分)

    旅游 题目描述 Ray 乐忠于旅游,这次他来到了T 城.T 城是一个水上城市,一共有 N 个景点,有些景点之间会用一座桥连接.为了方便游客到达每个景点但又为了节约成本,T 城的任意两个景点之间有且只有 ...

  2. 2018.08.14 bzoj4241: 历史研究(回滚莫队)

    传送们 简单的回滚莫队,调了半天发现排序的时候把m达成了n... 代码: #include<bits/stdc++.h> #define N 100005 #define ll long ...

  3. 2018.07.08 hdu6183 Color it(线段树)

    Color it Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 132768/132768 K (Java/Others) Proble ...

  4. 46 What Is Real Happiness ? 什么是真正的幸福 ?

    46 What Is Real Happiness ? 什么是真正的幸福 ? ①The way people hold to the belief that a fun-filled, pain-fr ...

  5. Docker mysql启动自动按顺序导入sql

    1.目录结构 -rw-r--r-- root root Jan : Dockerfile -rw-r--r-- root root Jan : initdb.sh drwxr-xr-x root ro ...

  6. BeanUtils.populate的方法的作用

    BeanUtils位于org.apache.commons.beanutils.BeanUtils下面,其方法populate的作用解释如下: 完整方法: BeanUtils.populate( Ob ...

  7. 初探Java反射机制

    反射库提供了一个非常丰富且精心设计的工具集,以便编写能够动态操纵java代码的程序库.这项功能被大量地应用于JavaBeans中.反射机制提供了在运行状态中获得和调用修改任何一个类的属性和方法的能力. ...

  8. IntelliJ IDEA 2017版 spring-boot修改端口号配置把端口号改为8081

    1.修改端口号主要是通过配置文件修改.如图: 完整版配置 ######################################################## ###server 配置信息 ...

  9. IP之NCO仿真

    NCO仿真要用.vo仿真模型,不能用.v文件 /**************************************************************************** ...

  10. 全面理解iOS开发中的Scroll View[转]

    from:http://mobile.51cto.com/hot-430409.htm 可能你很难相信,UIScrollView和一个标准的UIView差异并不大,scroll view确实会多一些方 ...