【bzoj4589】Hard Nim FWT+快速幂
题目大意:给你$n$个不大于$m$的质数,求有多少种方案,使得这$n$个数的异或和为$0$。其中,$n≤10^9,m≤10^5$。
考虑正常地dp,我们用$f[i][j]$表示前$i$个数的异或和为$j$的方案数。
我们构造一个数组$g$,若i为不大于$m$的质数,则$g[i]=1$,否则为$0$。
那么显然,$f[i][j]=\sum f[i-1][k]\times g[j \oplus k]$。 其中$j \oplus k$表示$j$和$k$的按位异或。
然后我们不难发现,$f[i]为f[i-1]$与$g$的异或卷积。
则$f[n]$为$g$的$n$次异或卷积,答案显然为$f[n][0]$。
我们用$FWT$将$g$变成点值表达式,然后做快速幂,最后再插值回来,就得到答案了。
时间复杂度为$O(m\ log\ m+m\ log\ n)$。
#include<bits/stdc++.h>
#define M 131072
#define L long long
#define MOD 1000000007
using namespace std;
int b[M]={},pri[M]={},use=;
void init(){
for(int i=;i<M;i++){
if(!b[i]) pri[++use]=i;
for(int j=;j<=use&&i*pri[j]<M;j++){
b[i*pri[j]]=;
if(i%pri[j]==) break;
}
}
}
L pow_mod(L x,int k){
L ans=;
while(k){
if(k&) ans=ans*x%MOD;
x=x*x%MOD; k>>=;
}
return ans;
}
void FWT(L a[],int n,int on){
for(int i=;i<n;i<<=)
for(int j=;j<n;j++)
if(i&j){
L w=a[i^j];
a[i^j]=(w+a[j])%MOD;
a[j]=(w-a[j]+MOD)%MOD;
}
if(on==-){
L inv=pow_mod(n,MOD-);
for(int i=;i<n;i++) a[i]=a[i]*inv%MOD;
}
}
L g[M]={},ans[M]={};
int main(){
init();
int t,n;
while(cin>>t>>n){
int len=; while(len<=n) len<<=;
for(int i=;i<=n;i++) if(b[i]==) g[i]=;
FWT(g,len,); memcpy(ans,g,M<<); t--;
while(t){
if(t&) for(int i=;i<len;i++) ans[i]=ans[i]*g[i]%MOD;
t>>=; for(int i=;i<len;i++) g[i]=g[i]*g[i]%MOD;
}
FWT(ans,len,-);
printf("%lld\n",ans[]);
memset(g,,len<<); memset(ans,,len<<);
}
}
【bzoj4589】Hard Nim FWT+快速幂的更多相关文章
- BZOJ4589: Hard Nim(FWT 快速幂)
题意 题目链接 Sol 神仙题Orzzzz 题目可以转化为从\(\leqslant M\)的质数中选出\(N\)个\(xor\)和为\(0\)的方案数 这样就好做多了 设\(f(x) = [x \te ...
- BZOJ4589 Hard Nim FWT 快速幂 博弈
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4589.html 题目传送门 - BZOJ4589 题意 有 $n$ 堆石子,每一堆石子的取值为 $2$ ...
- [bzoj4589]Hard Nim(FWT快速沃尔什变化+快速幂)
题面:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 题意 求选恰好n个数,满足每个数都是不大于m的质数,且它们的异或和为0的方案数. 解法 ...
- 【51Nod1773】A国的贸易 FWT+快速幂
题目描述 给出一个长度为 $2^n$ 的序列,编号从0开始.每次操作后,如果 $i$ 与 $j$ 的二进制表示只差一位则第 $i$ 个数会加上操作前的第 $j$ 个数.求 $t$ 次操作后序列中的每个 ...
- BZOJ4589 Hard Nim(快速沃尔什变换FWT)
这是我第一道独立做出来的FWT的题目,所以写篇随笔纪念一下. (这还要纪念,我太弱了) 题目链接: BZOJ 题目大意:两人玩nim游戏(多堆石子,每次可以从其中一堆取任意多个,不能操作就输).$T$ ...
- bzoj 4589: Hard Nim【线性筛+FWT+快速幂】
T了两次之后我突然意识到转成fwt形式之后,直接快速幂每次乘一下最后再逆回来即可,并不需要没此次都正反转化一次-- 就是根据nim的性质,先手必输是所有堆个数异或和为0,也就变成了一个裸的板子 #in ...
- bzoj4589: Hard Nim fwt
题意:求n个m以内的素数亦或起来为0的方案数 题解:fwt板子题,先预处理素数,把m以内素数加一遍(下标),然后fwt之后快速幂即可,在ifwt之后a[0]就是答案了 /*************** ...
- BZOJ4589 Hard Nim(快速沃尔什变换模板)
终于抽出时间来学了学,比FFT不知道好写到哪里去. #include <cstdio> typedef long long ll; ,p=1e9+; int k,m,n,a[N],pi[N ...
- BZOJ 4589 Hard Nim(FWT+博弈论+快速幂)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4589 [题目大意] 有n堆石子,每堆都是m以内的质数,请问后手必胜的局面有几种 [题解 ...
随机推荐
- win8 app code中设置Resources里定义好的Style
WPF中应该可以用这个: rectangle.Style = (Style)FindResource("FormLabelStyle"); 但 Win8.1 App是个精简框架,F ...
- 『jQuery』.html(),.text()和.val()的使用
『jQuery』.html(),.text()和.val()的使用 2013-04-21 10:25 by 我是文东, 8335 阅读, 0 评论, 收藏, 编辑 本节内容主要介绍的是如何使用jQue ...
- 2018.10.23 NOIP模拟 战争(并查集)
传送门 跟bzoj1015: [JSOI2008]星球大战是同一道题啊讲道理. 随便合并一下就能过了. 代码
- 2018.09.27 codeforces1045A. Last chance(线段树优化建图+最大流)
传送门 看完题应该都知道是网络流了吧. 但是第二种武器直接建图会gg. 因此我们用线段树优化建图. 具体操作就是,对于这m个人先建一棵线段树,父亲向儿子连容量为inf的边,最后叶子结点向对应的人连容量 ...
- Django入门指南-第10章:Django Admin 介绍(完结)
在浏览器中打开该URL:http://127.0.0.1:8000/admin/ 我们可以检查一切是否正常,打开URL http://127.0.0.1:8000 我们首先创建一个管理员帐户: pyt ...
- Part 1 - Getting Started(1-3)
https://simpleisbetterthancomplex.com/series/2017/09/04/a-complete-beginners-guide-to-django-part-1. ...
- 最大连续子序列 -- hdu -- 1231
http://acm.hdu.edu.cn/showproblem.php?pid=1231 最大连续子序列 Time Limit: 2000/1000 MS (Java/Others) Mem ...
- Elasticsearch 的一些关键概念
我更喜欢把 Elasticsearch 作为一种 nosql 去理解,它的一些开发概念和 MongoDB 以及 Redis 没有太大的区别,不过了解 Elasticsearch 中的一些核心概念对于你 ...
- 一起学习MVC(1)初步了解MVC
MVC 即模型视图控制器(Model View Controller) 利于团队开发.便于管理与维护.代码易读性强.未来的主流开发框架结构. 当然,缺点也显而易见,与传统开发框架相比有很大的不 ...
- python 检索一个目录下所有的txt文件,并把文件改为.log
检索一个目录及子目录下所有的txt文件,并把txt文件后缀改为log: import os f_path = r'C:\Users\PycharmProjects\mystudy\Testfolder ...