CGOS 8 备用交换机(割点)
题目链接:http://cojs.tk/cogs/problem/problem.php?pid=8
题意:n个城市之间有通讯网络,每个城市都有通讯交换机,直接或间接与其它城市连接。因电子设备容易损坏,需给通讯点配备备用交换机。但备用交换机数量有限,不能全部配备,只能给部分重要城市配置。于是规定:如果某个城市由于交换机损坏,不仅本城市通讯中断,还造成其它城市通讯中断,则配备备用交换机。请你根据城市线路情况,计算需配备备用交换机的城市个数,及需配备备用交换机城市的编号。
分析:无向图求割点。
AC代码:
#include<cstdio>
#include<cstring>
const int N=+;
struct EDGE{
int v,next;
}edge[N*N];
int first[N],low[N],dfn[N];
bool cut[N];
int g,cnt,rt,son,ans;
int min(int a,int b)
{
return a<b?a:b;
}
void AddEdge(int u,int v)
{
edge[g].v=v;
edge[g].next=first[u];
first[u]=g++;
}
void Tarjan(int u)
{
int i,v;
low[u]=dfn[u]=++cnt;
for(i=first[u];i!=-;i=edge[i].next)
{
v=edge[i].v;
if(!dfn[v])
{
Tarjan(v);
if(u==rt)
son++;
else
{
low[u]=min(low[u],low[v]);
if(low[v]>=dfn[u]&&cut[u]==false)
{
ans++;
cut[u]=true;
}
}
}
else
low[u]=min(low[u],dfn[v]);
}
}
int main()
{
freopen("gd.in","r",stdin);
freopen("gd.out","w",stdout);
int n,u,v,i;
scanf("%d",&n);
memset(first,-,sizeof(first));
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(cut,false,sizeof(cut));
g=cnt=ans=;
while(scanf("%d%d",&u,&v)!=EOF)
{
AddEdge(u,v);
AddEdge(v,u);
}
for(i=;i<=n;i++)
{
if(!dfn[i])
{
rt=i;
son=;
Tarjan(i);
if(son>&&cut[i]==false)
{
cut[i]=true;
ans++;
}
}
}
printf("%d\n",ans);
for(i=;i<=n;i++)
if(cut[i])
printf("%d\n",i);
return ;
}
CGOS 8 备用交换机(割点)的更多相关文章
- 图的割点 | | jzoj【P1230】 | | gdoi | |备用交换机
写在前面:我真的不知道图的割点是什么.... 看见ftp图论专题里面有个dfnlow的一个文档,于是怀着好奇的心情打开了这个罪恶的word文档,,然后就开始漫长的P1230的征讨战.... 图的割点是 ...
- COGS8 备用交换机
备用交换机 ★★ 输入文件:gd.in 输出文件:gd.out 简单对比时间限制:1 s 内存限制:128 MB [问题描述] n个城市之间有通讯网络,每个城市都有通讯交换机,直接或间 ...
- cogs——8. 备用交换机
8. 备用交换机 ★★ 输入文件:gd.in 输出文件:gd.out 简单对比时间限制:1 s 内存限制:128 MB [问题描述] n个城市之间有通讯网络,每个城市都有通讯交换机,直 ...
- 备用交换机(cogs 8)
[问题描述] n个城市之间有通讯网络,每个城市都有通讯交换机,直接或间接与其它城市连接.因电子设备容易损坏,需给通讯点配备备用交换机.但备用交换机数量有限,不能全部配备,只能给部分重要城市配置.于是规 ...
- COGS——T 8. 备用交换机
http://www.cogs.pro/cogs/problem/problem.php?pid=8 ★★ 输入文件:gd.in 输出文件:gd.out 简单对比时间限制:1 s 内存 ...
- 「刷题笔记」Tarjan
贴一个讲得非常详细的\(tarjan\)入门教程 信息传递 讲个笑话:我之前用并查集求最小环过的这题,然后看见题目上有个\(tarjan\)标签 留下了深刻的印象:\(tarjan\)就是并查集求最小 ...
- {part1}DFN+LOW(tarjan)割点
什么是jarjan? 1)求割点 定义:在无向连通图中,如果去掉一个点/边,剩下的点之间不连通,那么这个点/边就被称为割点/边(或割顶/桥). 意义:由于割点和割边涉及到图的连通性,所以快速地求出割点 ...
- tarjan算法求割点cojs 8
tarjan求割点:cojs 8. 备用交换机 ★★ 输入文件:gd.in 输出文件:gd.out 简单对比时间限制:1 s 内存限制:128 MB [问题描述] n个城市之间有通讯网 ...
- 图的割点 桥 双连通(byvoid)
[点连通度与边连通度] 在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合.一个图的点连通度的定义为,最小割点集 ...
随机推荐
- CSS中padding、margin、bordor属性详解
一.图解CSS padding.margin.border属性 W3C组织建议把所有网页上的对像都放在一个盒(box)中,设计师可以通过创建定义来控制这个盒的属性,这些对像包括段落.列表.标题.图片以 ...
- 发现一个很N且免费的html5拓扑图 关系图 生成组件
传送门:http://visjs.org/ demo代码 <!doctype html> <html> <head> <title>vis.js new ...
- PCB设计铜箔厚度、线宽和电流关系
PCB的载流能力取决于一下因素:线宽.线厚.容许温升.在同等条件下,假设10mil的走线能承受1A,那么50mil的走线能承受的电流却不是5A. 如下: 1 盎司 = 0.0014英寸 = 0.035 ...
- Tetris(俄罗斯方块)
一天有个小朋友问我OpenGL俄罗斯方块怎么写. 俄罗斯方块分成两部分游戏逻辑和画面渲染. 1. 游戏逻辑 一个简单的俄罗斯方块的逻辑部分需要考虑的情况如下: 1. 方块的表示(坐标, 旋转, 上下左 ...
- 六边形地图Cube coordinates理解
1.这个是 Axial coordinates,可以实现六边形4个方向上的移动 2.但是六边形还有两个方向需要移动,所以引入了Cube coordinates,这个坐标系多了一个轴向,Y轴,X轴沿水平 ...
- linux下实现压测-html报表生成-控制台参数优化【jmeter】
jmeter - 单机压测 - 命令行模式-html报表生成-控制台参数优化 一/ 准备工作 1.压力机安装并配置好 jdk 2.调试好程序脚本 再上传到 linux下 3.进入jmeter bin ...
- 关于几个与IO相关的重要概念
1.读/写IO 读IO就是发指令从磁盘读取某段序号连续的扇区内容.指令一般是通知磁盘开始扇区位置,然后给出需要从这个初始扇区往后读取的连续扇区个数,同时给出动作是读还是写.磁盘收到这条指令就会按照指令 ...
- NO.7:自学python之路------类的方法、异常处理、socket网络编程
引言 我visual studio 2017就算体积巨大.启动巨慢.功能简陋也不会安装PyCharm的,嘿呀,真香.好吧,为了实现socket网络编程,更换了软件. 正文 静态方法 只是在名义上归类管 ...
- Cocos2dx源码赏析(3)之事件分发
Cocos2dx源码赏析(3)之事件分发 这篇,继续从源码的角度赏析下Cocos2dx引擎的另一模块事件分发处理机制.引擎的版本是3.14.同时,也是学习总结的过程,希望通过这种方式来加深对Cocos ...
- Bootstrap学习--栅格系统
响应式布局页面:即同一套页面可以兼容不同分辨率的设备. Bootstrap依赖于栅格系统实现响应式布局,将一行均分为12个格子,可以指定元素占几个格子. 实现过程 1.定义容器,相当于之前的table ...