数据存储格式

Kafka的高可靠性的保障来源于其健壮的副本(replication)策略。一个Topic可以分成多个Partition,而一个Partition物理上由多个Segment组成。

Segment分2部分:索引文件和数据文件。索引文件保存元数据,记录了消息在数据文件中的偏移(offset),消息有固定物理结构,保证了正确的读取长度。

Segment文件带来好处:方便过期文件清理。只需要整体删除过期的Segment。以追加的方式写消息,顺序写磁盘极大提高了效率。

读取某offset消息的步骤变为:通过二分查找,找到offset所在Segment。通过Segment的索引文件,找到offset所在数据文件的物理偏移。读取数据。

副本复制与同步

从外部来看Partition类似一个不断增长,存储消息的数组,每个Partition有一个类似MySQL binlog的文件用来记录数据的写入。有两个新名词,HW(HighWatermark)表示当前Consumer可以看到Partition的offset位置,LEO(LogEndOffset)表示当前Partition最新消息的offset,各个副本单独维护。为了提高消息可靠性,Partition有N个副本。

N个副本中,有一个Leader,余下N-1个Follower。Kafka的写操作只在Leader副本上进行。通常这种副本写有两种方式:

  1. Leader写日志文件成功即返回成功。这样如果Follower在同步完数据前Leader当机,数据丢失。这种方式带来较高效率。
  2. Leader等待Follwer写日志成功并收到返回的acks后,才返回成功。这样Leader当机,重新选举的Leader与当机Leader数据一致,数据不丢失。但因为要等待Follwer返回,效率较慢。一般采用少数服从多数的选举方式,如果要应对f个副本当机,则至少需要2f+1个副本并使中的f+1个写成功。

Kafka没有使用上述机制。它实现了ISR(In-Sync Replication)的机制。

ISR(In-Sync Replication)机制

Leader维护一个副本队列(包含Leader自己),会及时将慢响应的Follwer剔除,并将追上Leader数据的Follower重新加入副本队列。

这样要保证数据高可靠所需要的副本数更少。比如应对2台机器的当机,ISR机制只需要3个副本。而上述机制2则需要2*2+1个副本。这样有效节约了大约一半的存储空间。

Leader当机,新的Leader是从ISR中按顺序选出。Leader恢复后成为Follower,删除上一个HW后所有数据后,从新的Leader进行同步。

数据可靠性配置

以下逻辑,可以保证一定程序数据可靠。当然副本越多,min.insync.replicas越大,则越可靠,但实际情况需要根据场景在效率与数据可靠上做权衡。

  1. 副本数设置为3。副本是Kafka实现HA的基础,通过replication.factor配置

  2. min.insync.replicas设置为2。ISR副本队列中副本最小个数。极端情况下,ISR中只有一个Leader副本,若Leader当机则服务不可用。因此至少配置为2个。若ISR中副本小于这个数字,Producer返回异常。

  3. 配置Leader选举条件unclean.leader.election.enable=false,只允许Leader从ISR队列中选出。

  4. request.required.acks=-1(等待ISR中的所有Follower都收到数据才返回成功),producer.type=sync(同步调用)

以上,保证了一个副本所在机器当机,Kafka仍提供服务,且数据正确未丢失。

数据去重

以上配置,保证了只要Leader返回成功,即不存在数据丢失。但考虑一种情况,Producer提交写请求到Leader后,Producer到Leader网络断开,此时Producer认为写失败。但实际,Follower正常同步到了Leader数据,HW更新。

此时Producer因为发送失败,会重发消息。此时Kafka中存在重复数据。这需要在Consume时业务逻辑中去重。Kafka本身不保证数据不重复。

Kafka高效的几个原因

1)架构层面

  1. 一个Topic多Partition部署实现并行处理,线性扩展
  2. ISR副本复制机制实现性能与可用性的平衡

2)磁盘优化

  1. Partition中顺序写磁盘
  2. mmap实现内存批量写磁盘,减少I/O次数

3)网络优化

  1. sendfile系统调用实现零拷贝,减少上下文切换
  2. Producer批量发送,减少网络I/O次数
  3. 支持数据压缩

Kafka高可用实现的更多相关文章

  1. Kafka 高可用设计

    Kafka 高可用设计 2016-02-28 杜亦舒 Kafka在早期版本中,并不提供高可用机制,一旦某个Broker宕机,其上所有Partition都无法继续提供服务,甚至发生数据丢失对于分布式系统 ...

  2. Kafka高可用环境搭建

    Apache Kafka是分布式发布-订阅消息系统,在 kafka官网上对 kafka 的定义:一个分布式发布-订阅消息传递系统. 它最初由LinkedIn公司开发,Linkedin于2010年贡献给 ...

  3. kafka高可用探究

    kafka高可用探究 众所周知 kafka 的 topic 可以使用 --replication-factor 数和 partitions 数来保证服务的高可用性 问题发现 但在最近的运维过程中,3台 ...

  4. Kafka —— 基于 ZooKeeper 搭建 Kafka 高可用集群

    一.Zookeeper集群搭建 为保证集群高可用,Zookeeper集群的节点数最好是奇数,最少有三个节点,所以这里搭建一个三个节点的集群. 1.1 下载 & 解压 下载对应版本Zookeep ...

  5. Kafka 学习之路(二)—— 基于ZooKeeper搭建Kafka高可用集群

    一.Zookeeper集群搭建 为保证集群高可用,Zookeeper集群的节点数最好是奇数,最少有三个节点,所以这里搭建一个三个节点的集群. 1.1 下载 & 解压 下载对应版本Zookeep ...

  6. Kafka 系列(二)—— 基于 ZooKeeper 搭建 Kafka 高可用集群

    一.Zookeeper集群搭建 为保证集群高可用,Zookeeper 集群的节点数最好是奇数,最少有三个节点,所以这里搭建一个三个节点的集群. 1.1 下载 & 解压 下载对应版本 Zooke ...

  7. 入门大数据---基于Zookeeper搭建Kafka高可用集群

    一.Zookeeper集群搭建 为保证集群高可用,Zookeeper 集群的节点数最好是奇数,最少有三个节点,所以这里搭建一个三个节点的集群. 1.1 下载 & 解压 下载对应版本 Zooke ...

  8. Kafka高可用实现原理

    数据存储格式 Kafka的高可靠性的保障来源于其健壮的副本(replication)策略.一个Topic可以分成多个Partition,而一个Partition物理上由多个Segment组成. Seg ...

  9. Kafka高可用的保证

    zookeeper作为去中心化的集群模式,消费者需要知道现在那些生产者(对于消费者而言,kafka就是生产者)是可用的.    如果没有zookeeper每次消费者在消费之前都去尝试连接生产者测试下是 ...

随机推荐

  1. Storm 第二章 Storm安装

    1 strom集群规划 Nimbus:hadoop1 zookeeper:hadoop2,hadoop3,hadoop4 supervisor:hadoop5,hadoop6,hadoop7 安装文件 ...

  2. Python之函数的递归、匿名函数、内置函数

    一.函数的递归 ''' 1 什么是函数递归 函数递归调用(是一种特殊的嵌套调用):在调用一个函数的过程中,又直接或间接地调用了该函数本身 递归必须要有两个明确的阶段: 递推:一层一层递归调用下去,强调 ...

  3. html5 初试 indexedDB

    indexedDB是存储大量结构化数据的API,demo中用到的是异步API,麻烦的就是所有对indexedDB的操作都会发生一个异步的‘请求’,只要熟悉了API操作起来也很简单. http://ww ...

  4. requests.get()解析

    1.requests.get(url, params=None, headers=None, cookies=None, auth=None, timeout=None) Sends a GET re ...

  5. Kafka发送到分区的message是否是负载均衡的?

    首先说结论,是负载均衡的.也就是说,现在有一个producer,向一个主题下面的三个分区发送message,没有指定具体要发送给哪个partition, 这种情况,如果是负载均衡的,发送的消息应该均匀 ...

  6. skipfish介绍

    skipfish 开发语言:C语言 命令行扫描器 主动扫描web安全评估工具 谷歌开发 已经不再进行维护 重点关注web代码 通过两种方式进项扫描:1.字典枚举 2.递归爬网 优点:速度快.支持多路单 ...

  7. day12生成器

    迭代器 __iter__() 获取迭代器 __next__() 下一个 生成器 本质就是迭代器 两种方式写生成器 1. 生成器函数 2. 生成器表达式 生成器函数 函数内部有yield. yield返 ...

  8. hadoop 集群HA高可用搭建以及问题解决方案

    hadoop 集群HA高可用搭建 目录大纲 1. hadoop HA原理 2. hadoop HA特点 3. Zookeeper 配置 4. 安装Hadoop集群 5. Hadoop HA配置 搭建环 ...

  9. Mysql数据库的四大特性

    Mysql数据库事务的四大特性(ACID) 事务:把一组密不可分的操作系列集合在一起,这些操作要么全部执行,要么全部不执行. 1.原子性:事务是内定义的操作是一个整体,是不可分割的. 2.一致性:事务 ...

  10. Class-dump 安装和使用记录(导出应用的头文件)

    class-dump算是逆向工程中一个入门级的工具,可以很方便的导出程序头文件,可以轻松的了解程序结构方便逆向.安装包下载地址:http://stevenygard.com/projects/clas ...