[CSAcademy]Cycle Tree

题目大意:

定义环树是一张无向连通的简单图,它的生成方式如下:

  1. \(2\)个点\(1\)条边的图是环树;
  2. 对任意一个环树,加入\(k\)个点\(a_{1\sim k}\),加入方式为从原图中选择一条边\((u,v)\),连接\((u,a_1),(a_1,a_2)\ldots(a_{k-1},a_k),(a_k,v)\),得到的图也是环树。

给定一个\(n(n\le5\times10^4)\)个点,\(m(m\le10^5)\)条边的环树,求最大独立集大小。

思路:

每次选取一个度数为\(2\)的点,将这条边删掉,将相邻的两点间连上虚点。不断进行这样的操作,最后只会剩下\(2\)个点。

\(f[0/1][0/1][i][j]\)表示对于边\((i,j)\),是否选取\(i/j\)的最大独立集,按照删点的顺序进行DP即可。

每个点最多被删一次,因此时间复杂度\(\mathcal O(n+m)\)。

源代码:

#include<map>
#include<set>
#include<queue>
#include<cstdio>
#include<cctype>
#include<climits>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=5e4+1;
bool inq[N];
std::queue<int> q;
std::set<int> e[N],set[N];
std::map<int,int> f[2][2][N];
inline void add_edge(const int &u,const int &v) {
e[u].emplace(v);
e[v].emplace(u);
}
inline void add(int &x,const int &y) {
x+=y;
}
inline void up(int &x,const int &y) {
x=std::max(x,y);
}
int main() {
const int n=getint(),m=getint();
for(register int i=0;i<m;i++) {
const int u=getint(),v=getint();
add_edge(u,v);
f[0][0][u][v]=f[0][0][v][u]=0;
f[0][1][u][v]=f[1][0][v][u]=1;
f[1][0][u][v]=f[0][1][v][u]=1;
f[1][1][u][v]=f[1][1][v][u]=INT_MIN;
set[u].insert(v);
set[v].insert(u);
}
int ans=1;
for(register int i=1;i<=n;i++) {
if(e[i].size()==2) {
q.push(i);
inq[i]=true;
}
}
while(!q.empty()) {
const int x=q.front();
q.pop();
if(e[x].size()!=2) continue;
const int u=*e[x].begin(),v=*e[x].rbegin();
add(f[0][0][u][v],std::max(f[0][0][x][u]+f[0][0][x][v],f[1][0][x][u]+f[1][0][x][v]-1));
add(f[0][1][u][v],std::max(f[0][0][x][u]+f[0][1][x][v],f[1][0][x][u]+f[1][1][x][v]-1)-!!f[0][1][u][v]);
add(f[1][0][u][v],std::max(f[0][1][x][u]+f[0][0][x][v],f[1][1][x][u]+f[1][0][x][v]-1)-!!f[1][0][u][v]);
if(!set[u].count(v)) add(f[1][1][u][v],std::max(f[0][1][x][u]+f[0][1][x][v],f[1][1][x][u]+f[1][1][x][v]-1)-2*!!f[1][1][u][v]);
up(ans,f[0][0][v][u]=f[0][0][u][v]);
up(ans,f[1][0][v][u]=f[0][1][u][v]);
up(ans,f[0][1][v][u]=f[1][0][u][v]);
up(ans,f[1][1][v][u]=f[1][1][u][v]);
e[x].clear();
e[u].erase(x);
e[v].erase(x);
e[u].insert(v);
e[v].insert(u);
if(e[u].size()==2&&!inq[u]) {
q.push(u);
inq[u]=true;
}
if(e[v].size()==2&&!inq[v]) {
q.push(v);
inq[v]=true;
}
}
printf("%d\n",ans);
return 0;
}

[CSAcademy]Cycle Tree的更多相关文章

  1. [CSAcademy]Connected Tree Subgraphs

    题目大意: 给你一棵n个结点的树,求有多少种染色方案,使得染色过程中染过色的结点始终连成一块. 思路: 树形DP. 设f[x]表示先放x时,x的子树中的染色方案数,y为x的子结点. 则f[x]=pro ...

  2. 4105: [Thu Summer Camp 2015]平方运算

    首先嘛这道题目只要知道一个东西就很容易了:所有循环的最小公约数<=60,成一条链的长度最大为11,那么我们就可以用一个很裸的方法.对于在链上的数,我们修改直接暴力找出并修改.对于在环上的数,我们 ...

  3. Leetcode: Graph Valid Tree && Summary: Detect cycle in undirected graph

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  4. [CSAcademy]Find the Tree

    [CSAcademy]Find the Tree 题目大意: 交互题. 有一棵\(n(n\le2000)\)个结点的树,但是你并不知道树的形态.你可以调用\({\rm query}(x,y,z)\)( ...

  5. [CSAcademy]Virus on a Tree

    [CSAcademy]Virus on a Tree 题目大意: 给你一棵\(n(n\le10^5)\)个点的树,一开始点\(1\)有病毒,可以沿着边扩散.你可以事先切掉若干条边,使得病毒扩散不超过\ ...

  6. Terminating app due to uncaught exception 'CALayerInvalid', reason: 'layer <CALayer: 0x7fda42c66e30> is a part of cycle in its layer tree'

    iOS App里面所有的View构成一个组件树,这个树里面如果有了闭环就会出现这个报错,最常见的你不小在某UIViewController里面写了这样的代码: someView.addSubView( ...

  7. [LeetCode] Convert Sorted List to Binary Search Tree 将有序链表转为二叉搜索树

    Given a singly linked list where elements are sorted in ascending order, convert it to a height bala ...

  8. 学习RxJS:Cycle.js

    原文地址:http://www.moye.me/2016/06/16/learning_rxjs_part_two_cycle-js/ 是什么 Cycle.js 是一个极简的JavaScript框架( ...

  9. Graph Valid Tree

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

随机推荐

  1. console.dir() 与 console.dirxml() 的使用

    在调试JavaScript程序时,有时需要dump某些对象的详细信息.通过手工编写JavaScript代码可以完成这一工作:针对对象的属性进行循环,将循环到的每一个属性值打印出来:可见,这一过程是比较 ...

  2. 使用idea的的第一个坑-----javax.xml.ws.WebServiceRef

    新建项目启动报错的时候,一直报这个错,类找不到,郁闷了半天,都没百度到结果,后来发现是添加tomcat的时候jre没 指定..... 哈哈哈,太懵逼了,指定就ok了

  3. Testbench学习——$fopen/$display/$fclose

    昨天在用Vivado写Testbench顶层时,为了以后便于数据的存储导出分析,需要用的文件数据记录的功能,于是,下面谈谈$fopen/$display/$fclose这三者的用法. $fopen—— ...

  4. 渗透测试===kali linux的安装

    方法一: kali linux 安装在本地的vitural box 或者 wm ware中 方法二: 安装在移动硬盘或者储存卡中,插到电脑就能用

  5. C# 日文网址转punnycode

    Uri uri = new Uri(url); IdnMapping idn = new IdnMapping();url= url.Replace(uri.Host, idn.GetAscii(ur ...

  6. idea开发工具下载安装教程

    我用这款工具主要用于java开发 在安装这个工具之前需要配置java的环境 java的jdk环境配置 jdk:1.8 jdk官网下载链接 --->点我 进入之后,下拉  选择 jdk1.8版本 ...

  7. RabbitMQ--Publish/Subscribe(四)

    先前例子中,我们创建了一个简单的日志系统,广播messages到consumer接收方. 但如果有日志错误级别的,不同的consumer接收不同错误级别的信息.比如consumer1接收info和wa ...

  8. 【前端vue开发】vue子调父 $emit (把子组件的数据传给父组件)

    ps:App.vue 父组件 Hello.vue 子组件 <!--App.vue :--> <template> <div id="app"> ...

  9. 洛谷P2002消息扩散

    传送门啦 这个题就是tarjan强连通分量与入度的例题了. 思路: 利用缩点的思想,先预处理一下所有的强连通分量,然后把每个强连通分量内的所有节点看做一个节点,然后处理一张新图,然后检查每个点的入度, ...

  10. 洛谷P1120 小木棍(升级版)

    传送门啦 一道经典的搜索剪枝题,不废话,步入正题. 分析: 一.输入时手动过滤不合法的情况 二.很明显我们要枚举把哪些棍子拼接成原来的长棍,而原始长度(原来的长棍的长度)都相等,因此我们可以在 $ d ...