洛谷P3119 USACO15JAN 草鉴定
题目描述
In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-way cow paths all over his farm. The farm consists of N fields, conveniently numbered 1..N, with each one-way cow path connecting a pair of fields. For example, if a path connects from field X to field Y, then cows are allowed to travel from X to Y but not from Y to X.
Bessie the cow, as we all know, enjoys eating grass from as many fields as possible. She always starts in field 1 at the beginning of the day and visits a sequence of fields, returning to field 1 at the end of the day. She tries to maximize the number of distinct fields along her route, since she gets to eat the grass in each one (if she visits a field multiple times, she only eats the grass there once).
As one might imagine, Bessie is not particularly happy about the one-way restriction on FJ's paths, since this will likely reduce the number of distinct fields she can possibly visit along her daily route. She wonders how much grass she will be able to eat if she breaks the rules and follows up to one path in the wrong direction. Please compute the maximum number of distinct fields she can visit along a route starting and ending at field 1, where she can follow up to one path along the route in the wrong direction. Bessie can only travel backwards at most once in her journey. In particular, she cannot even take the same path backwards twice.
约翰有n块草场,编号1到n,这些草场由若干条单行道相连。奶牛贝西是美味牧草的鉴赏家,她想到达尽可能多的草场去品尝牧草。
贝西总是从1号草场出发,最后回到1号草场。她想经过尽可能多的草场,贝西在通一个草场只吃一次草,所以一个草场可以经过多次。因为草场是单行道连接,这给贝西的品鉴工作带来了很大的不便,贝西想偷偷逆向行走一次,但最多只能有一次逆行。问,贝西最多能吃到多少个草场的牧草。
这道题还是很复杂的。
根据去品尝牧草,我们很容易想到,如果一些草场在一个连通分量里面,只要到达这个连通分量,里面所有的草场就能到达,所以Tarjan缩点是无疑的了。
缩完点以后,我们保证不存在环,这样就可以跑一遍最长路,其中边权是每个连通分量的大小。
但是,还有能倒着走一条边的情况。这里就需要用到分层最短路。
在对于缩完点的图中,边u->v,我们将v连向u+n,代表下一层,当然u+n也要连到v+n,这样,我们能从每一个点,倒着走到下一层,但是无法从下一层走回来。
然后再输出起点连通分量+n的最长路dis值就好了。
但是注意,如果整个图缩完点是一个连通分量,那么要输出起点连通分量,不用加n。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <stack>
#include <queue>
#define REP(i,k,n) for(int i=k;i<=n;i++)
#define in(a) a=read()
#define MAXN 200010
using namespace std;
inline int read(){
int x=,f=;
char ch=getchar();
for(;!isdigit(ch);ch=getchar())
if(ch=='-')
f=-;
for(;isdigit(ch);ch=getchar())
x=x*+ch-'';
return x*f;
}
stack <int> S;
queue <int> Q;
int n,m;
int total1,head1[MAXN],to1[MAXN],nxt1[MAXN];
int total2,head2[MAXN<<],to2[MAXN<<],nxt2[MAXN<<],val[MAXN<<];
int num,cnt,dfn[MAXN],low[MAXN],vis[MAXN],bel[MAXN],size[MAXN],dis[MAXN];
inline void adl1(int a,int b){
total1++;
to1[total1]=b;
nxt1[total1]=head1[a];
head1[a]=total1;
return ;
}
inline void adl2(int a,int b,int c){
total2++;
to2[total2]=b;
val[total2]=c;
nxt2[total2]=head2[a];
head2[a]=total2;
return ;
}
inline void tarjan(int u){
dfn[u]=low[u]=++cnt;
S.push(u),vis[u]=;
for(int e=head1[u];e;e=nxt1[e]){
if(!dfn[to1[e]]){
tarjan(to1[e]);
low[u]=min(low[u],low[to1[e]]);
}
else if(vis[to1[e]]) low[u]=min(low[u],dfn[to1[e]]);
}
if(dfn[u]==low[u]){
num++;
while(!S.empty() && S.top()!=u) size[num]++,bel[S.top()]=num,vis[S.top()]=,S.pop();
if(!S.empty()) size[num]++,bel[S.top()]=num,vis[S.top()]=,S.pop();
}
return ;
}
inline void spfa(){
Q.push(bel[]);
dis[bel[]]=;
while(!Q.empty()){
int u=Q.front();
Q.pop(),vis[u]=;
for(int e=head2[u];e;e=nxt2[e])
if(dis[to2[e]]<dis[u]+val[e]){
dis[to2[e]]=dis[u]+val[e];
if(!vis[to2[e]]) vis[to2[e]]=,Q.push(to2[e]);
}
}
return ;
}
int main(){
in(n),in(m);
int a,b;
REP(i,,m) in(a),in(b),adl1(a,b);
REP(i,,n)
if(!dfn[i])
tarjan(i);
REP(u,,n)
for(int e=head1[u];e;e=nxt1[e])
if(bel[u]!=bel[to1[e]]){
adl2(bel[u],bel[to1[e]],size[bel[u]]);
adl2(bel[u]+num,bel[to1[e]]+num,size[bel[u]]);
adl2(bel[to1[e]],bel[u]+num,size[bel[to1[e]]]);
}
adl2(bel[],bel[]+num,size[bel[]]);
memset(vis,,sizeof(vis));
spfa();
cout<<dis[bel[]+num]<<endl;
return ;
}
洛谷P3119 USACO15JAN 草鉴定的更多相关文章
- 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur 解题报告
P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 约翰有\(n\)块草场,编号1到\(n\),这些草场由若干条单行道相连.奶牛贝西是美味牧草的鉴赏家,她想到达尽可 ...
- 洛谷——P3119 [USACO15JAN]草鉴定Grass Cownoisseur
P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...
- 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur (SCC缩点,SPFA最长路,枚举反边)
P3119 [USACO15JAN]草鉴定Grass Cownoisseur 题目描述 In an effort to better manage the grazing patterns of hi ...
- 洛谷 P3119 [USACO15JAN]草鉴定Grass Cownoisseur
屠龙宝刀点击就送 Tarjan缩点+拓扑排序 以后缩点后建图看n范围用vector ,或者直接用map+vector 结构体里数据要清空 代码: #include <cstring> #i ...
- 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur
http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...
- 洛谷3119 [USACO15JAN]草鉴定Grass Cownoisseur
原题链接 显然一个强连通分量里所有草场都可以走到,所以先用\(tarjan\)找强连通并缩点. 对于缩点后的\(DAG\),先复制一张新图出来,然后对于原图中的每条边的终点向新图中该边对应的那条边的起 ...
- P3119 [USACO15JAN]草鉴定Grass Cownoisseur
题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...
- luogu P3119 [USACO15JAN]草鉴定Grass Cownoisseur
题目描述 In an effort to better manage the grazing patterns of his cows, Farmer John has installed one-w ...
- P3119 [USACO15JAN]草鉴定Grass Cownoisseur 分层图或者跑两次最长路
https://www.luogu.org/problemnew/show/P3119 题意 有一个有向图,允许最多走一次逆向的路,问从1再走回1,最多能经过几个点. 思路 (一)首先先缩点.自己在缩 ...
随机推荐
- Linux触摸屏驱动测试程序范例【转】
转自:http://blog.sina.com.cn/s/blog_4b4b54da0102viyl.html 转载2015-05-09 16:28:27 标签:androiditlinux 触摸屏驱 ...
- avalonJS-源码阅读(二)
上一篇文章讲述的avalon刷页面所用到的几个函数.这篇则是主要讲avalon对刷DOM刷出来的avalon自定义属性如何处理的. 目录[-] avalon页面处理(2) 数据结构 解析avalon标 ...
- oracle11g字符集问题之一
select * from T_WORK_EXPERIENCE t where ROLE=N'被雇佣者' 因为ROLE为NVARCHAR2(30),所以要加N.pl/sql developer 中可以 ...
- 实现checkebox全选取消操作
方法一: javascript代码: function checkedChild(obj,index){ var checkBoxs = document.getElementsByName(&quo ...
- python基础-类的属性(类属性,实例属性,私有属性)
一:类的属性 类的属性分为:类属性(公有属性),实例属性和私有属性. 1)类属性(公有属性(静态字段): 类定义时直接指定的属性(不是在__init__方法中),可以通过类名直接访问属性,并且保存 ...
- sublime Text快捷键(超级全)
sublime Text快捷键(超级全) Ctrl+Shift+P:打开命令面板 Ctrl+P:搜索项目中的文件 Ctrl+G:跳转到第几行 Ctrl+W:关闭当前打开文件 Ctrl+Shift+W: ...
- JQuery中DOM事件合成用法
jQuery有两个合成事件——hover()方法和toggle()方法 类似前面讲过的ready()方法,hover()方法和toggle()方法都属于jQuery自定义的方法. hover()方法: ...
- BatchNorm caffe源码
1.计算的均值和方差是channel的 2.test/predict 或者use_global_stats的时候,直接使用moving average use_global_stats 表示是否使用全 ...
- 奇妙的CSS之伪类与伪元素
我们都知道,在CSS中有很多选择器,例如id(#), class(.),属性[attr],这些虽然可以满足一些需要,但有时候还力有未逮.伪类和伪元素就提供了一个有益的补充,可以使我们更高效编码.伪类和 ...
- js中的事件委托或是事件代理
JavaScript(jQuery)中的事件委托 https://www.cnblogs.com/zhoushengxiu/p/5703095.html js中的事件委托或是事件代理详解 https: ...