学习完了差分约束是否有解, 现在我们学习求解最大解和最小解

首先我们回想一下是否有解的求解过程, 不难发现最后跑出来任意两点的最短路关系即为这两元素的最短路关系。

即: 最后的最短路蕴含了所有元素之间的约束关系

好的了解了这点, 我们可以想到, 既然我们知道了元素之间的约束关系, 确定了一个元素的值, 不就确定了全部元素的极值了吗?

求解时, 经常地把源点的值设为 一个特定的值 ,让源点变为基础点, 来拓展其他的点的值。这就是差分约束系统元素极值的大致求解思路了

还有一点需要注意, (哪里写的都是易证, 我也不会证明啊):

求取最小值时, 需要把差分约束一般式的小于等于号变为大于等于号, 跑最长路即为答案;

求取最大值时, 小于等于号不变, 求最短路即为答案;

P3275 [SCOI2011]糖果

题目描述

幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果。但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的多,于是在分配糖果的时候,lxhgww需要满足小朋友们的K个要求。幼儿园的糖果总是有限的,lxhgww想知道他至少需要准备多少个糖果,才能使得每个小朋友都能够分到糖果,并且满足小朋友们所有的要求。

输入输出格式

输入格式:

输入的第一行是两个整数N,K。接下来K行,表示这些点需要满足的关系,每行3个数字,X,A,B。如果X=1, 表示第A个小朋友分到的糖果必须和第B个小朋友分到的糖果一样多;如果X=2, 表示第A个小朋友分到的糖果必须少于第B个小朋友分到的糖果;如果X=3, 表示第A个小朋友分到的糖果必须不少于第B个小朋友分到的糖果;如果X=4, 表示第A个小朋友分到的糖果必须多于第B个小朋友分到的糖果;如果X=5, 表示第A个小朋友分到的糖果必须不多于第B个小朋友分到的糖果;

输出格式:

输出一行,表示lxhgww老师至少需要准备的糖果数,如果不能满足小朋友们的所有要求,就输出-1。


差分约束求最小值。 得到约束条件改为大于号求最长路即可。

注意每个小朋友都必须有糖, 故此处源点的初值应设为 \(1\) ,当然也可以把源点到每个点的路径长度设为 \(1\)

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
typedef long long LL;
using namespace std;
LL RD(){
LL out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const LL maxn = 1000019,INF = 1e9 + 19;
LL num, nr;
LL head[maxn],nume = 1;
struct Node{
LL v,dis,nxt;
}E[maxn << 1];
void add(LL u,LL v,LL dis){
E[++nume].nxt = head[u];
E[nume].v = v;
E[nume].dis = dis;
head[u] = nume;
}
LL d[maxn];
bool inq[maxn];
LL tim[maxn];
bool SPFA(LL s){
for(LL i = 1;i <= num;i++)d[i] = -INF;
queue<LL>Q;
d[s] = 0;
Q.push(s);
inq[s] = 1;
while(!Q.empty()){
LL u = Q.front();Q.pop();inq[u] = 0;
for(LL i = head[u];i;i = E[i].nxt){
LL v = E[i].v, dis = E[i].dis;
if(d[u] + dis > d[v]){
d[v] = d[u] + dis;
if(!inq[v]){
Q.push(v);inq[v] = 1;
tim[v]++;
if(tim[v] > num)return 0;
}
}
}
}
return 1;
}
int main(){
num = RD();nr = RD();
for(LL i = num;i >= 1;i--)add(0, i, 1);
for(LL i = 1;i <= nr;i++){
LL cmd = RD(), a = RD(), b = RD();
if(cmd == 1)add(a, b, 0), add(b, a, 0);
else if(cmd == 2)add(a, b, 1);
else if(cmd == 3)add(b, a, 0);
else if(cmd == 4)add(b, a, 1);
else add(a, b, 0);
if(cmd % 2 == 0 && a == b){printf("-1\n");return 0;}
}
if(!SPFA(0)){printf("-1\n");return 0;}
LL ans = 0;
for(LL i = 1;i <= num;i++)ans += d[i];
printf("%lld\n", ans);
return 0;
}

P3275 [SCOI2011]糖果 && 差分约束(二)的更多相关文章

  1. 洛谷P3275 [SCOI2011]糖果(差分约束)

    题目描述 幼儿园里有 $N$ 个小朋友,$lxhgww $老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的 ...

  2. BZOJ 2330 SCOI2011糖果 差分约束

    2330: [SCOI2011]糖果 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2819  Solved: 820 题目连接 http://www ...

  3. BZOJ2330:[SCOI2011]糖果(差分约束)

    Description 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的 ...

  4. bzoj 2330 [SCOI2011]糖果 差分约束模板

    题目大意 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的多,于是在分配 ...

  5. BZOJ 2330: [SCOI2011]糖果( 差分约束 )

    坑爹...要求最小值要转成最长路来做.... 小于关系要转化一下 , A < B -> A <= B - 1 ------------------------------------ ...

  6. [SCOI2011]糖果 (差分约束)

    题目链接 Solution 差分约束乱搞就好了. 需要注意的地方: 对于大于等于的直接联等于,应为等于,因为对于我满足条件而言,等于总是最好的. 对于等于的,注意要建双向边. 然后要开 \(long~ ...

  7. 洛谷P3275 [SCOI2011]糖果 [差分约束系统]

    题目传送门 糖果 题目描述 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比 ...

  8. 洛谷——P3275 [SCOI2011]糖果

    P3275 [SCOI2011]糖果 差分约束模板题,基本思路就是$d[v]+w[v,u]<=d[u]$,$Spfa$更新方法, 有点套路的是要建立原点,即图中不存在的点来向每个点加边,但同样这 ...

  9. [luogu P3275] [SCOI2011]糖果

    [luogu P3275] [SCOI2011]糖果 题目描述 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些 ...

随机推荐

  1. Daily Scrum (2015/11/1)

    今天晚上我们照例召开了每周末的小组例会,主要总结本周的工作和讨论下一周的工作. 首先是本周的一些主要工作: 1.进行了代码的修改和完善. 2.开始进行服务器配置和UI. 3.学习借鉴了nutch爬虫的 ...

  2. Linux读书笔记第一、二章

    第一章    Linux内核简介 1.1Unix历史 Unix特点:1.很简洁 2.所有东西都被当成文件对待 3.Unix内核和相关的系统工具软件都是用C语言编写而成 4.进程创建非常迅速 1.2追寻 ...

  3. Task 5.1 电梯调度程序需求调研报告

    1.任务概述: 1.1任务背景:试想一下,石家庄铁道大学基础教学楼的电梯配置如下:大厦有18层, 4部电梯,很多乘客使用这些电梯的日常(旅客重量:平均70公斤最大120公斤,最小45公斤).其他常量数 ...

  4. 封装,策略,Asp换脸

    封装.策略 using System; using System.Collections.Generic; using System.Linq; using System.Text; namespac ...

  5. MAVEN ERROR maven-resources-plugin

    maven新建项目时报错 Could not calculate build plan: Plugin org.apache.maven.plugins:maven-resources-plugin: ...

  6. 【贪心算法】POJ-1862 简单哈夫曼

    一.题目 Description Our chemical biologists have invented a new very useful form of life called stripie ...

  7. BETA-5

    前言 我们居然又冲刺了·五 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 过去两天完成了哪些任务 前一份代码方案全部垮掉,我,重构啦 接下来的计划 加速加速,一定要完成速度模块 ...

  8. 深入理解Java虚拟机 &GC分代年龄

    堆内存 Java 中的堆是 JVM 所管理的最大的一块内存空间,主要用于存放各种类的实例对象.在 Java 中,堆被划分成两个不同的区域:新生代 ( Young ).老年代 ( Old ).新生代 ( ...

  9. MySql--学习成长过程

    MySql--学习成长过程 模拟测试: QQ数据库管理 一.创建数据库并添加关系和测试数据 1 ##创建QQ数据库,完成简单的测试 2 3 #创建数据库 4 DROP DATABASE IF EXIS ...

  10. 最新wireshark抓包教程

    http://jingyan.baidu.com/article/d71306350f213b13fdf475b9.html 大家都知道,sniffer是一款收费产品, 要真正的学会使用,因为有许多的 ...