【刷题】BZOJ 1061 [Noi2008]志愿者招募
Description
申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者。经过估算,这个项目需要N 天才能完成,其中第i 天至少需要Ai 个人。 布布通过了解得知,一共有M 类志愿者可以招募。其中第i 类可以从第Si 天工作到第Ti 天,招募费用是每人Ci 元。新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这并不是他的特长!于是布布找到了你,希望你帮他设计一种最优的招募方案。
Input
第一行包含两个整数N, M,表示完成项目的天数和可以招募的志愿者的种类。 接下来的一行中包含N 个非负整数,表示每天至少需要的志愿者人数。 接下来的M 行中每行包含三个整数Si, Ti, Ci,含义如上文所述。为了方便起见,我们可以认为每类志愿者的数量都是无限多的。
Output
仅包含一个整数,表示你所设计的最优方案的总费用。
Sample Input
3 3
2 3 4
1 2 2
2 3 5
3 3 2
Sample Output
14
HINT
1 ≤ N ≤ 1000,1 ≤ M ≤ 10000,题目中其他所涉及的数据均不超过2^31-1。
Solution
很巧妙的费用流
\(i\) 号点代表第 \(i\) 天
超级源点向 \(1\) 连流量为 \(inf\) ,费用为 \(0\) 的边
\(i\) 号点向 \(i+1\) 号点连流量为 \(inf\) ,费用为 \(inf-a[i]\) 的边
对于招募区间 \(l,r\) ,从 \(l\) 向 \(r+1\) 连流量为\(inf\) ,费用为 \(c\) 的边
\(n+1\) 号点向超级汇点连流量为 \(inf\) ,费用为 \(0\) 的边
跑费用流,最终费用就是答案
这样建边,相当于我们要求每一天都要 \(inf\) 个人,但是对于第 \(i\) 天,先免费给你 \(inf-a[i]\) 个人,网络流肯定先会走这个。剩下的 \(a[i]\) 个人,通过招募区间的连接,是需要钱的
由于题目保证有解,所以最大流最后肯定是 \(inf\) ,保证了每天的需要的情况下跑出了最小费用,即是答案
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=1000+10,MAXM=12000+10,inf=0x3f3f3f3f;
int n,m,e=1,clk,s,t,answas,cur[MAXN],beg[MAXN],level[MAXN],p[MAXN],vis[MAXN],to[MAXM<<1],nex[MAXM<<1],cap[MAXM<<1],was[MAXM<<1];
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline void insert(int x,int y,int z,int k)
{
to[++e]=y;
nex[e]=beg[x];
beg[x]=e;
cap[e]=z;
was[e]=k;
to[++e]=x;
nex[e]=beg[y];
beg[y]=e;
cap[e]=0;
was[e]=-k;
}
inline bool bfs()
{
memset(level,inf,sizeof(level));
level[s]=0;
p[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
p[x]=0;
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&level[to[i]]>level[x]+was[i])
{
level[to[i]]=level[x]+was[i];
if(!p[to[i]])p[to[i]]=1,q.push(to[i]);
}
}
return level[t]!=inf;
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
vis[x]=clk;
int res=0;
for(register int &i=cur[x];i;i=nex[i])
if((vis[to[i]]^vis[x])&&cap[i]&&level[to[i]]==level[x]+was[i])
{
int f=dfs(to[i],min(maxflow,cap[i]));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
answas+=f*was[i];
maxflow-=f;
if(!maxflow)break;
}
return res;
}
inline void MCMF()
{
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),dfs(s,inf);
}
int main()
{
read(n);read(m);
s=n+2,t=s+1;
insert(s,1,inf,0);insert(n+1,t,inf,0);
for(register int i=1,x;i<=n;++i)read(x),insert(i,i+1,inf-x,0);
for(register int i=1;i<=m;++i)
{
int u,v,w;read(u);read(v);read(w);
if(u>v)std::swap(u,v);
insert(u,v+1,inf,w);
}
MCMF();
write(answas,'\n');
return 0;
}
【刷题】BZOJ 1061 [Noi2008]志愿者招募的更多相关文章
- BZOJ 1061: [Noi2008]志愿者招募【单纯形裸题】
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 4813 Solved: 2877[Submit][Stat ...
- BZOJ 1061: [Noi2008]志愿者招募
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 4064 Solved: 2476[Submit][Stat ...
- BZOJ 1061: [Noi2008]志愿者招募 [单纯形法]【学习笔记】
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 3975 Solved: 2421[Submit][Stat ...
- BZOJ 1061: [Noi2008]志愿者招募 费用流
1061: [Noi2008]志愿者招募 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1061 Description 申奥成功后,布布 ...
- BZOJ 1061: [Noi2008]志愿者招募 [单纯形法]【学习笔记看另一篇吧】
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 3975 Solved: 2421[Submit][Stat ...
- BZOJ.1061.[NOI2008]志愿者招募(线性规划 对偶原理 单纯形 / 费用流SPFA)
题目链接 线性规划 用\(A_{ij}=0/1\)表示第\(i\)天\(j\)类志愿者能否被招募,\(x_i\)为\(i\)类志愿者招募了多少人,\(need_i\)表示第\(i\)天需要多少人,\( ...
- BZOJ 1061: [Noi2008]志愿者招募(线性规划与网络流)
http://www.lydsy.com/JudgeOnline/problem.php?id=1061 题意: 思路: 直接放上大神的建模过程!!!(https://www.byvoid.com/z ...
- BZOJ 1061 [Noi2008]志愿者招募(费用流)
题目描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能完成,其中第i ...
- bzoj 1061 [Noi2008]志愿者招募(数学模型,MCMF)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1061 [题意] 雇人满足每天至少需要的人数. [思路一] Byvoid的题解 clic ...
随机推荐
- c#简易学生信息管理系统
在近期的学习中,我们学习了泛型及泛型集合的概念和使用,泛型是c#中的一个重要概念,为了巩固我们学习的成果,我们可以使用一个实例来进行练习 题目及要求 要求使用Windows窗体应用程序,制作出如上图的 ...
- Docker Manager for Docker Swarm deploy
一.Swarm概述 Swarm是Docker公司在2014年12月初发布的一套较为简单的工具,用来管理Docker集群,它将一群Docker宿主机变成一个单一的,虚拟的主机.Swarm使用标准的Doc ...
- unity灯光烘焙设置详解
游戏场景中灯光照明的构成 现实生活中的光线是有反射.折射.衍射等特性的.对这些基本特性的模拟一直以来都是计算机图形图像学的重要研究方向. 在CG中,默认的照明方式都是不考虑这些光线特性的,因此出来的效 ...
- 前端基础之CSS(总结)
css学什么?? 主要学习选择器和属性,选择器是去找到标签的位置,属性是给标签增加需要的样式. CSS选择器 1.基本选择器: 1.标签选择器 2.ID选择器 3.类选择器(class="c ...
- 客户端传入数据的校验-RestController进阶
使用Hibernate Validator进行数据校验 Bean Validation注解(需要加入相关依赖,在SpringBoot中可以直接使用,SpringBoot会帮我们直接加入) @Null ...
- SICP读书笔记 3.1
SICP CONCLUSION 让我们举起杯,祝福那些将他们的思想镶嵌在重重括号之间的Lisp程序员 ! 祝我能够突破层层代码,找到住在里计算机的神灵! 目录 1. 构造过程抽象 2. 构造数据抽象 ...
- 2.深入解析数据类型与变量——《Excel VBA 程序开发自学宝典》
2.1 数据类型 数据类型 所占字节 Byte 1 Boolean 2 Integer 2 Long 4 Single 4 Double 8 Currency 8 Decimal 14 Date 8 ...
- PHP 包含文件
1.require test123.php <?php $a=1; 运行文件: <?php require('test123.php'); echo 'Hello!'; echo '< ...
- (转)Django配置数据库读写分离
转:https://blog.csdn.net/Ayhan_huang/article/details/78784486 转:http://www.cnblogs.com/dreamer-fish/p ...
- 第26次Scrum会议(11/14)【欢迎来怼】
一.小组信息 队名:欢迎来怼小组成员队长:田继平成员:李圆圆,葛美义,王伟东,姜珊,邵朔,阚博文 小组照片 二.开会信息 时间:2017/11/14 11:35~11:57,总计22min.地点:东北 ...