题意:

   已知两点 (x1,y1) 和 (x2, y2)求两点间线段上的整点的个数

解析:

  就是求gcd(abs(x2- x1),abs(y2 - y1))

证明:

  我们分水平方向和竖直方向两个方向看   这些在线段上的整点的横纵坐标一定可以平分 x2-x1  和  y2-y1 这两条线段

即需要求这两条线段的最大公约数  使得点最多

代码转自:https://blog.csdn.net/xiang_6/article/details/78523634   懒得写了

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<set>
#include<queue>
#include<stack>
#include<map>
#define PI acos(-1.0)
#define in freopen("in.txt", "r", stdin)
#define out freopen("out.txt", "w", stdout) using namespace std;
typedef long long ll;
typedef unsigned long long ull;
const int maxn = 1e6 + , maxd = + , mod = 1e9 + ;
const int INF = 0x7f7f7f7f; int T; ll gcd(ll a, ll b) {
return b == ? a : gcd(b, a%b);
} int main() {
int T;
scanf("%d", &T);
for(int tt = ; tt <= T; ++tt) {
ll a, b, c, d;
scanf("%lld %lld %lld %lld", &a, &b, &c, &d);
ll ans = gcd( abs(a-c), abs(b-d) );
printf("Case %d: %lld\n", tt, ans+);
}
return ;
}

How Many Points? LightOJ - 1077(线段经过整点个数与gcd 证明)的更多相关文章

  1. LightOJ::1077 -----奇妙的最大公约数

    题目:http://www.lightoj.com/volume_showproblem.php?problem=1077 题意:在平面上, 给出两个点的坐标 例如:(x, y) 其中x, y 都是整 ...

  2. hihocoder 1077线段树

    http://hihocoder.com/problemset/problem/1077 #include <bits/stdc++.h> using namespace std; #de ...

  3. LightOJ 1135(线段树)

    题解引自:http://www.cnblogs.com/wuyiqi/archive/2012/05/27/2520642.html 题意: 有n个数,刚开始都为0 add i , j 给i,j区间内 ...

  4. CodeForces 19D Points(离散化+线段树+单点更新)

    题目链接: huangjing 题意:给了三种操作 1:add(x,y)将这个点增加二维坐标系 2:remove(x,y)将这个点从二维坐标系移除. 3:find(x,y)就是找到在(x,y)右上方的 ...

  5. Points Division(线段树+DP)2019牛客暑期多校训练营(第一场)

    题意:https://ac.nowcoder.com/acm/contest/881/I 给你n个平面上的点,每个点有a.b两个权值,现在让你划分成两个区域(要求所有A集合里的点不能在任何B集合里的点 ...

  6. 2019牛客暑期多校训练营(第一场)I Points Division(dp+线段树优化)

    给你n个点,第i个点在的位置为(xi,yi),有两个属性值(ai,bi).现在让你把这n个点划分为A和B两个部分,使得最后不存在i∈A和j∈B,使得xi>=xj且yi<=yj.然后对于所有 ...

  7. LightOj 1024 - Eid (求n个数的最小公约数+高精度)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1024 题意:给你n(2<=n<=1000)个数, 然后求n个数的最小公倍数 ...

  8. Trailing Zeroes (I) LightOJ - 1028(求因子个数)

    题意: 给出一个N 求N有多少个别的进制的数有后导零 解析: 对于一个别的进制的数要转化为10进制 (我们暂且只分析二进制就好啦) An * 2^(n-1) + An-1 * 2^(n-2) + `` ...

  9. 51nod 1180 方格射击游戏

    M*N的方格矩阵,一个人在左下角格子的中心,除他所站位置外,其他格子的中心都有一个敌人,他一次可发射一枚子弹干掉一条直线上的所有敌人,问至少要发射多少子弹才能干掉所有敌人. Input 输入2个数m, ...

随机推荐

  1. Linux入门基础(六):Linux系统启动

    系统启动流程 BIOS MBR : Boot Code 执行引导程序-GRUB 加载内核 执行init runlevel BIOS BIOS(basic input output system),我们 ...

  2. 2018Java年底总结

    一年又过去了,这是我的第二年的JAVA开发,总感觉有很多想说的,可惜语言组织能力着实一般,以下列举一些今年的总结. 1.首先告诫一下新入行或者新入职经验不多的小伙伴,写sql的时候根据业务能单表就单表 ...

  3. appium 元素定位方法汇总

    以上图为例,要定位到右下角的 我的 ,并点击 # appium的webdriver提供了11种元素定位方法,在selenium的基础上扩展了三个,可以在pycharm里面输入driver.find_e ...

  4. JavaScript-强制类型转换

    因为没有学过其他编程语言,因此作为我的第一门编程“母语”我在这就不举其他编程语言的例子了,JavaScript这个动态类型脚本语言的变量号称是没有类型的,那么我们怎么转换他的变量呢?而且还要强行转换. ...

  5. Go入门指南

    第一部分:学习 Go 语言 第1章:Go 语言的起源,发展与普及 1.1 起源与发展 1.2 语言的主要特性与发展的环境和影响因素 第2章:安装与运行环境 2.1 平台与架构 2.2 Go 环境变量 ...

  6. python3 拼接字符串的7种方法

    1.直接通过(+)操作符拼接 1 2 >>> 'Hello' + ' ' + 'World' + '!' 'Hello World!' 使用这种方式进行字符串连接的操作效率低下,因为 ...

  7. 基于C#的机器学习--目录

    转载请注明出处:https://www.cnblogs.com/wangzhenyao1994/p/10223666.html 文章发表的另一个地址:https://blog.csdn.net/wyz ...

  8. truffle Dapp 搭建

    安装truffle $ npm install -g truffle 依赖环境 NodeJS 访问https://nodejs.org 官方网站下载安装 系统:Windows, Linux or Ma ...

  9. 启动Nodejs服务

    vs code 中间创建 1.  settings.json { , { , { 'Content-Type': 'text/plain;charset=utf-8' })

  10. 随手记录-linux-Linux目录结构

    转:别人的 装完Linux,首先需要弄清Linux 标准目录结构 / root —?启动Linux时使用的一些核心文件.如操作系统内核.引导程序Grub等. home —?存储普通用户的个人文件 ft ...