BZOJ1061 [Noi2008]志愿者招募 【单纯形】
题目链接
题解
今天终于用正宗的线性规划\(A\)了这道题
题目可以看做有\(N\)个限制和\(M\)个变量
变量\(x_i\)表示第\(i\)种志愿者的人数,对于第\(i\)种志愿者所能触及的那些天,\(x_i\)的系数都为\(1\),其余为\(0\)
也就是
\left\{
\begin{aligned}
\sum\limits_{i = 1}^{M} [S_i \le j \le T_i]x_i \ge A_i \qquad j \in [1,N]\\
x_i \ge 0 \qquad i \in [1,M]
\end{aligned}
\right.
\]
转化为标准型线性规划,使用单纯形算法求解即可
诶?解保证是整数吗?
似乎相对于费用流,空间大且跑得慢,,,
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<vector>
#include<ctime>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int N = 1005,M = 10005;
const double eps = 1e-8,INF = 1e15;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,m,id[M << 1];
double a[N][M];
void Pivot(int l,int e){
swap(id[n + l],id[e]);
double t = a[l][e]; a[l][e] = 1;
for (int j = 0; j <= n; j++) a[l][j] /= t;
for (int i = 0; i <= m; i++) if (i != l && fabs(a[i][e]) > eps){
t = a[i][e]; a[i][e] = 0;
for (int j = 0; j <= n; j++) a[i][j] -= a[l][j] * t;
}
}
void init(){
while (true){
int e = 0,l = 0;
for (int i = 1; i <= m; i++) if (a[i][0] < -eps && (!l || (rand() & 1))) l = i;
if (!l) break;
for (int j = 1; j <= n; j++) if (a[l][j] < -eps && (!e || (rand() & 1))) e = j;
Pivot(l,e);
}
}
void simplex(){
while (true){
int l = 0,e = 0; double mn = INF;
for (int j = 1; j <= n; j++)
if (a[0][j] > eps){e = j; break;}
if (!e) break;
for (int i = 1; i <= m; i++) if (a[i][e] > eps && a[i][0] / a[i][e] < mn)
mn = a[i][0] / a[i][e],l = i;
Pivot(l,e);
}
}
int main(){
srand(time(NULL)); int S,T,C;
m = read(); n = read();
REP(i,m) a[i][0] = -read();
REP(j,n){
S = read(); T = read(); C = read();
for (int i = S; i <= T; i++)
a[i][j] = -1;
a[0][j] = -C;
}
REP(i,n) id[i] = i;
init(); simplex();
printf("%d",(int)(a[0][0] + 0.5));
return 0;
}
BZOJ1061 [Noi2008]志愿者招募 【单纯形】的更多相关文章
- [BZOJ1061][Noi2008]志愿者招募
[BZOJ1061][Noi2008]志愿者招募 试题描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿 ...
- 网络流解线性规划问题 BZOJ1061: [Noi2008]志愿者招募
线性规划定义: 在给定有限的资源和竞争约束情况下,很多问题都可以表述为最大化或最小化某个目标.如果可以把目标指定为某些变量的线性函数,而且如果可以将资源约束指定为这些变量的等式或不等式,则得到了一个线 ...
- 【费用流】BZOJ1061: [Noi2008]志愿者招募(这题超好)
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 5291 Solved: 3173[Submit][Stat ...
- [BZOJ1061] [Noi2008] 志愿者招募 (费用流)
Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能 ...
- 【费用流】BZOJ1061[NOI2008]-志愿者招募
[题目大意] 一个项目需要n天完成,其中第i天至少需要Ai个人.共有m类人可以招募,其中第i类可以从第Si天做到第Ti天,每人的招募费用为Ci元.求最小招募费用. [思路] byvoid神犇的建图详解 ...
- BZOJ1061: [Noi2008]志愿者招募(线性规划)
Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 5725 Solved: 3437[Submit][Status][Discuss] Descript ...
- BZOJ1061 NOI2008 志愿者招募 线性规划、费用流
传送门 一道思路很妙的线性规划网络流 设\(X_i\)表示第\(i\)天需要的人数,\(P_i\)表示第\(i\)种人雇佣的个数 那么我们可以列出一系列式子 比如说样例就可以列出三个式子: \(P_1 ...
- 线性规划费用流解法(Bzoj1061: [Noi2008]志愿者招募)
题面 传送门 Sol 线性规划费用流解法用与求解未知数为非负数的问题 这道题可以列出一堆形如 \(x[i]+x[j]+x[k]+...>=a[p]\) 的不等式 我们强行给每个式子减去一个东西, ...
- [BZOJ1061][Noi2008]志愿者招募 线性规划+费用流
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1061 根据题意列方程,然后用网络流解线性规划. 题解直接贴ByVoid的吧,太神了:htt ...
随机推荐
- 监控与管理-SpringBoot
在微服务架构中,我们将原本庞大的单体系统拆分成多个提供不同服务的应用. 虽然 各个应用的内部逻辑因分解而得以简化,但是由于部署应用的数量成倍增长,使得系统的 维护复杂度大大提升. 对于运维人员来说,随 ...
- v-if、v-show 指令
HTML部分: <div id="app"> <button type="button" @click="flag=!flag&qu ...
- 在虚拟机上搭建物理机可访问的web服务(IIS)
0x0 前言 安装webug4.0的时候突发奇想,想学下如何在虚拟机里搭建网站,然后让主机像访问互联网的网站一样访问虚拟机的网站,为以后渗透测试搭建环境做准备 0x1 虚拟机安装win2003[以防万 ...
- vue+webpack前端开发项目的安装方法
安装前,需要进行node.npm检测,查看是否已有安装node.npm环境: 操作方法:Windows+R 调出运行框,输入cmd 调出命令框:分别输入node -v 回车(查看node版本) npm ...
- type命令详解
转自:http://codingstandards.iteye.com/blog/831504 在脚本中type可用于检查命令或函数是否存在,存在返回0,表示成功:不存在返回正值,表示不成功. $ t ...
- lsblk命令详解
基础命令学习目录首页 lsblk 默认是树形方式显示: $lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINTsda 8:0 0 2. ...
- linux命令系列 stat & touch
1. stat - display file or file system status stat命令主要用于显示文件或文件系统的状态,详细信息 事实上,stat命令显示的是文件的I节点信息.Linu ...
- Gogoing的NABCD
特点之一:路线推荐 N 用户出行需要一个合理的路线计划 A 运用百度地图,还有根据自己的所想去的地方,推荐最省时间,最省钱的路线安排 B 方便用户出行,节约时间,节约金钱 C 对于旅行方面的App, ...
- 进阶系列(10)—— C#元数据和动态编程
一.元数据的介绍 元数据是用来描述数据的数据(Data that describes other data).单单这样说,不太好理解,我来举个例子.下面是契诃夫的小说<套中人>中的一段,描 ...
- mvc 页面方法学习-RenderBody方法
教程地址:https://docs.microsoft.com/zh-cn/aspnet/mvc/overview/getting-started/introduction/adding-a-view