BZOJ1061 [Noi2008]志愿者招募 【单纯形】
题目链接
题解
今天终于用正宗的线性规划\(A\)了这道题
题目可以看做有\(N\)个限制和\(M\)个变量
变量\(x_i\)表示第\(i\)种志愿者的人数,对于第\(i\)种志愿者所能触及的那些天,\(x_i\)的系数都为\(1\),其余为\(0\)
也就是
\left\{
\begin{aligned}
\sum\limits_{i = 1}^{M} [S_i \le j \le T_i]x_i \ge A_i \qquad j \in [1,N]\\
x_i \ge 0 \qquad i \in [1,M]
\end{aligned}
\right.
\]
转化为标准型线性规划,使用单纯形算法求解即可
诶?解保证是整数吗?
似乎相对于费用流,空间大且跑得慢,,,
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<vector>
#include<ctime>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int N = 1005,M = 10005;
const double eps = 1e-8,INF = 1e15;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int n,m,id[M << 1];
double a[N][M];
void Pivot(int l,int e){
swap(id[n + l],id[e]);
double t = a[l][e]; a[l][e] = 1;
for (int j = 0; j <= n; j++) a[l][j] /= t;
for (int i = 0; i <= m; i++) if (i != l && fabs(a[i][e]) > eps){
t = a[i][e]; a[i][e] = 0;
for (int j = 0; j <= n; j++) a[i][j] -= a[l][j] * t;
}
}
void init(){
while (true){
int e = 0,l = 0;
for (int i = 1; i <= m; i++) if (a[i][0] < -eps && (!l || (rand() & 1))) l = i;
if (!l) break;
for (int j = 1; j <= n; j++) if (a[l][j] < -eps && (!e || (rand() & 1))) e = j;
Pivot(l,e);
}
}
void simplex(){
while (true){
int l = 0,e = 0; double mn = INF;
for (int j = 1; j <= n; j++)
if (a[0][j] > eps){e = j; break;}
if (!e) break;
for (int i = 1; i <= m; i++) if (a[i][e] > eps && a[i][0] / a[i][e] < mn)
mn = a[i][0] / a[i][e],l = i;
Pivot(l,e);
}
}
int main(){
srand(time(NULL)); int S,T,C;
m = read(); n = read();
REP(i,m) a[i][0] = -read();
REP(j,n){
S = read(); T = read(); C = read();
for (int i = S; i <= T; i++)
a[i][j] = -1;
a[0][j] = -C;
}
REP(i,n) id[i] = i;
init(); simplex();
printf("%d",(int)(a[0][0] + 0.5));
return 0;
}
BZOJ1061 [Noi2008]志愿者招募 【单纯形】的更多相关文章
- [BZOJ1061][Noi2008]志愿者招募
[BZOJ1061][Noi2008]志愿者招募 试题描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿 ...
- 网络流解线性规划问题 BZOJ1061: [Noi2008]志愿者招募
线性规划定义: 在给定有限的资源和竞争约束情况下,很多问题都可以表述为最大化或最小化某个目标.如果可以把目标指定为某些变量的线性函数,而且如果可以将资源约束指定为这些变量的等式或不等式,则得到了一个线 ...
- 【费用流】BZOJ1061: [Noi2008]志愿者招募(这题超好)
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 5291 Solved: 3173[Submit][Stat ...
- [BZOJ1061] [Noi2008] 志愿者招募 (费用流)
Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能 ...
- 【费用流】BZOJ1061[NOI2008]-志愿者招募
[题目大意] 一个项目需要n天完成,其中第i天至少需要Ai个人.共有m类人可以招募,其中第i类可以从第Si天做到第Ti天,每人的招募费用为Ci元.求最小招募费用. [思路] byvoid神犇的建图详解 ...
- BZOJ1061: [Noi2008]志愿者招募(线性规划)
Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 5725 Solved: 3437[Submit][Status][Discuss] Descript ...
- BZOJ1061 NOI2008 志愿者招募 线性规划、费用流
传送门 一道思路很妙的线性规划网络流 设\(X_i\)表示第\(i\)天需要的人数,\(P_i\)表示第\(i\)种人雇佣的个数 那么我们可以列出一系列式子 比如说样例就可以列出三个式子: \(P_1 ...
- 线性规划费用流解法(Bzoj1061: [Noi2008]志愿者招募)
题面 传送门 Sol 线性规划费用流解法用与求解未知数为非负数的问题 这道题可以列出一堆形如 \(x[i]+x[j]+x[k]+...>=a[p]\) 的不等式 我们强行给每个式子减去一个东西, ...
- [BZOJ1061][Noi2008]志愿者招募 线性规划+费用流
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1061 根据题意列方程,然后用网络流解线性规划. 题解直接贴ByVoid的吧,太神了:htt ...
随机推荐
- selenium 基本常用操作
from selenium import webdriverfrom selenium.webdriver.common.action_chains import ActionChains #鼠标操作 ...
- 你也可以手绘二维码(二)纠错码字算法:数论基础及伽罗瓦域GF(2^8)
摘要:本文讲解二维码纠错码字生成使用到的数学数论基础知识,伽罗瓦域(Galois Field)GF(2^8),这是手绘二维码填格子理论基础,不想深究可以直接跳过.同时数论基础也是 Hash 算法,RS ...
- Task 6.2站立会议一
今天大家把这两天查的资料都拿出来整合到了一起,并仔细分析了其中的联系和区别. 因为大家每个人的思路都不一样,有各种各样的想法和不同的意见,所以最终统一意见是很难的一个过程.开始大家认我们可以做一个单独 ...
- 第1阶段冲刺成果—简单运算game(APP)
第1阶段冲刺成果 由于我们团队都没有Android的基础,所以在这一块花了很长的时间去学习探索,就连简单的Android的电脑配置也花了很长的时间,所以其他的DONE的都没有完成,这是失败的地方.但是 ...
- Internet History, Technology and Security (Week5.1)
Week5 The Transport layer is built on the Internetwork layer and is what makes our network connectio ...
- visualStudo编译c程序, 提示函数unSafe问题
问题描述: 在利用visualStudo进行C语言编程时,若C语言源程序中有print,freopen等函数时,IDE软件总是unSafe,而且无法通过编译. 解决方案: 在<视图>中找到 ...
- CSS+JS笔记
CSS篇: 1.a标签去掉下划线 a { text-decoration:none; }
- Prism6下的MEF:第一个Hello World
最近看书比较多,正好对过去几年的软件开发做个总结.写这个的初衷只是为了简单的做一些记录. 前言 复杂的应用程序总是面临很多的页面之间的数据交互,怎样创建松耦合的程序一直是多数工程师所思考的问题.诸如依 ...
- SCRUM:周日周一任务实现情况
1.设计.制作欢迎界面 2.对杰龙注册界面进行重设计和规范strings → → →
- 复利计算测试(C语言)
对我们和复利计算程序,写单元测试. 有哪些场景? 期待的返回值 写测试程序. 运行测试. 测试模块 测试输入 预期结果 运行结果 bug跟踪 计算终值 (本金,年限,利率) 终值 1 (100 ...