题目链接:快餐店

  震惊!某ZZ选手此题调了一天竟是因为……>>点击查看

  一般碰到这种基环树的题都要先想想树上怎么做。这道题如果是在树上的话……好像求一遍直径就做完了?答案就是直径长度的一半……

  然后我们来考虑一下基环树上的情况。假设我们选中了一个位置\(u\)作为快餐店,那么环上的有一条边是没有用的,也就是说\(u\)到其它所有点的最短路都不会经过这条边。于是,我们就可以枚举删掉环上每条边,就需要快速统计剩下这棵树的直径。如果这课树的直径没有经过环上的边,那么我们是可以通过预处理环上每棵树的直径来得到的。于是,我们接下来只考虑直径经过换上的边的情况。

  为了方便讲述,假设环上的点的编号为\(1\)到\(m\),\(1\)到\(x\)的边权和为\(w_x\)。首先,我们需要预处理环上每个点\(u\)为根往下的最长链\(f_u\)。然后,我们其实预处理几个数组即可(这里只考虑前缀),包括\(pre_i\),表示环上只用\([1,i]\)这些点组成的最长的链。由于\(pre_i=\max\{f_u+f_v+w_u-w_v\}(u>v)\),所以我们还需要维护一下\(f_x+w_x\),\(f_x-w_x\)的前缀最大值,然后每次更新即可。注意为了避免选出了两个重复的点,可以每次使用\(f_u+w_u+\max\{f_v-w_v\}(v<u)\)和\(pre_{u-1}\)来更新\(pre_u\)。类似的可以对后缀求出对应的数组。

  然后,我们在枚举环上断哪条边的时候只需要分三种情况讨论即可。假设我们断了边\((u,u+1)\),那么假设环上最优的两个点为\(i,j(i<j)\),那么要么\(1 \le i < j \le u\),要么\(u+1 \le i < j \le m\),还有\(1\le i \le u\)且\(u+1\le j \le m\)。分别用我们预处理出来的结果算出来,取个\(\max\)就是直径。最后把所有直径的\(\min\)和不过环的直径取个\(\max\)就是最终答案的两倍。

  然后我递归的时候函数名打错了……然后就到了另外一个函数里面去了……然后一天就这么过去了(捂脸

  你不要说我开头那个链接是在骗你吗……你看这里不是讲了原因么→_→

  下面贴代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout);
#define maxn 100010
#define maxm 200010
#define INF (1LL<<60) using namespace std;
typedef long long llg; int head[maxn],next[maxm],to[maxm],c[maxm],tt;
int n,m,fa[maxn],dfn[maxn],a[maxn];
llg dep[maxn],ans,f[maxn],b[maxn];
llg su[maxn],pr[maxn],qi[maxn][2],ho[maxn][2];
bool vis[maxn]; int getint(){
int w=0,q=0;
char c=getchar();
while((c>'9'||c<'0')&&c!='-') c=getchar();
if(c=='-') q=1,c=getchar();
while(c>='0'&&c<='9') w=w*10+c-'0',c=getchar();
return q?-w:w;
} void link(int x,int y){
to[++tt]=y;next[tt]=head[x];head[x]=tt;
to[++tt]=x;next[tt]=head[y];head[y]=tt;
c[tt-1]=c[tt]=getint();
} void work(int rt,int u){
while(u!=fa[rt]){
a[++m]=u; vis[u]=1; u=fa[u];
b[m+1]=dep[a[m]]-dep[u];
}
for(int i=1;i<=m;i++) b[i]+=b[i-1];
} void dfs(int u){
dfn[u]=++tt;
for(int i=head[u],v;v=to[i],i;i=next[i])
if(v!=fa[u] && !dfn[v]){
dep[v]=dep[u]+c[i];
fa[v]=u,dfs(v);
}
for(int i=head[u],v;v=to[i],i;i=next[i])
if(fa[v]!=u && dfn[v]>dfn[u]) b[1]=c[i],work(u,v);
} void dp(int u){
vis[u]=1;
for(int i=head[u],v;v=to[i],i;i=next[i])
if(!vis[v]){
dp(v); ans=max(ans,f[u]+f[v]+c[i]);
f[u]=max(f[u],f[v]+c[i]);
}
} void solve(){
qi[0][0]=ho[m+1][0]=pr[0]=-INF;
qi[0][1]=ho[m+1][1]=su[m+1]=-INF;
for(int i=1,u;u=a[i],i<=m;i++){
qi[i][0]=max(qi[i-1][0],f[u]+b[i]-b[1]);
qi[i][1]=max(qi[i-1][1],f[u]-b[i]+b[1]);
pr[i]=max(pr[i-1],f[u]+b[i]-b[1]+qi[i-1][1]);
}
for(int i=m,u;u=a[i],i>=1;i--){
ho[i][0]=max(ho[i+1][0],f[u]-b[i]+b[m]);
ho[i][1]=max(ho[i+1][1],f[u]+b[i]-b[m]);
su[i]=max(su[i+1],f[u]-b[i]+b[m]+ho[i+1][1]);
}
llg g=pr[m],now=0;
for(int i=1;i<m;i++){
now=b[1]+qi[i][0]+ho[i+1][0];
now=max(now,max(pr[i],su[i+1]));
g=min(g,now);
}
ans=max(ans,g);
} int main(){
File("a");
n=getint();
for(int i=1;i<=n;i++) link(getint(),getint());
tt=0; dfs(1);
for(int i=1;i<=m;i++) dp(a[i]);
solve();
printf("%.1lf",ans/2.0);
return 0;
}

  BZOJ提交网址:BZOJ 3242 快餐店

UOJ #126 【NOI2013】 快餐店的更多相关文章

  1. bzoj 3242: [Noi2013]快餐店 章鱼图

    3242: [Noi2013]快餐店 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 266  Solved: 140[Submit][Status] ...

  2. [UOJ#122][NOI2013]树的计数

    [UOJ#122][NOI2013]树的计数 试题描述 我们知道一棵有根树可以进行深度优先遍历(DFS)以及广度优先遍历(BFS)来生成这棵树的 DFS 序以及 BFS 序.两棵不同的树的 DFS 序 ...

  3. P1399 [NOI2013] 快餐店 方法记录

    原题题面P1399 [NOI2013] 快餐店 题目描述 小 T 打算在城市 C 开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小 T 希望快餐店的地址选在离最 ...

  4. UOJ#126【NOI2013】快餐店

    [NOI2013]快餐店 链接:http://uoj.ac/problem/126 YY了一个线段树+类旋转卡壳的算法.骗了55分.还比不上$O(n^2)$暴力T^T 题目实际上是要找一条链的两个端点 ...

  5. 【BZOJ3242】【UOJ#126】【NOI2013】快餐店

    NOI都是这种难度的题怎么玩嘛QAQ 原题: 小T打算在城市C开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近的地方. ...

  6. 【BZOJ 3242】【UOJ #126】【CodeVS 3047】【NOI 2013】快餐店

    http://www.lydsy.com/JudgeOnline/problem.php?id=3242 http://uoj.ac/problem/126 http://codevs.cn/prob ...

  7. NOI2013 快餐店

    http://uoj.ac/problem/126 总的来说,还是很容易想的,就是有点恶心. 首先,很明显只有一个环. 我们先找出这个环,给各棵树编号id[i],然后各棵树分别以环上的点为根,求出每个 ...

  8. 【uoj126】 NOI2013—快餐店

    http://uoj.ac/problem/126 (题目链接) 题意 求基环树直径. Solution zz选手迟早退役,唉,右转题解→_→:LCF 细节 拓扑排序的时候度数为0时入队.我在想什么w ...

  9. bzoj3242 [Noi2013]快餐店

    Description 小T打算在城市C开设一家外送快餐店.送餐到某一个地点的时间与外卖店到该地点之间最短路径长度是成正比的,小T希望快餐店的地址选在离最远的顾客距离最近的地方. 快餐店的顾客分布在城 ...

随机推荐

  1. 【文章存档】Azure Web 应用如何修改 IIS 配置

    链接 https://docs.azure.cn/zh-cn/articles/azure-operations-guide/app-service-web/aog-app-service-web-h ...

  2. 大牛都是这样写测试用例的,你get到了嘛?

    1. 用于语句覆盖的基路径法 基路径法保证设计出的测试用例,使程序的每一个可执行语句至少执行一次,即实现语句覆盖.基路径法是理论与应用脱节的典型,基本上没有应用价值,读者稍作了解即可,不必理解和掌握. ...

  3. Java 内存模型_1

    title: Java 内存模型_1 date: 2017-01-15 17:11:02 tags: [JMM] categories: [Programming,Java] --- 概述 本文记录 ...

  4. Mysql数据库的四大特性

    Mysql数据库事务的四大特性(ACID) 事务:把一组密不可分的操作系列集合在一起,这些操作要么全部执行,要么全部不执行. 1.原子性:事务是内定义的操作是一个整体,是不可分割的. 2.一致性:事务 ...

  5. Linux shell中&,&&,|,||的用法

    前言 在玩dvwa的命令注入漏洞的时候,遇到了没有预料到的错误,执行 ping 127.0.0.1 & echo "<?php phpinfo(); ?>" & ...

  6. Python中fnmatch模块的使用

    fnmatch()函数匹配能力介于简单的字符串方法和强大的正则表达式之间,如果在数据处理操作中只需要简单的通配符就能完成的时候,这通常是一个比较合理的方案.此模块的主要作用是文件名称的匹配,并且匹配的 ...

  7. 随手记录-linux-vim使用

  8. Spring MVC controller的方法返回值

    ModeAndView 可以在构造时确定需要跳转的页面也可以通过setViewName方法来确定需要跳转的页面 String 指定返回页面的视图名称,页面跳转,如果加了@ResponseBody注解, ...

  9. static和final

    是静态修饰符,什么叫静态修饰符呢?大家都知道,在程序中任何变量或者代码都是在编译时由系统自动分配内存来存储的,而所谓静态就是指在编译后所分配的内存会一直存在,直到程序退出内存才会释放这个空间,也就是只 ...

  10. express框架结合ejs模板引擎使用

    我们在项目里建立一个views文件夹(必须),如果你不想使用views文件夹的话需要调用app.set("views","自定义文件夹名"),然后在里面建立一个 ...