1、tf.app.flags

tf定义了tf.app.flags,用于支持接受命令行传递参数,相当于接受argv。tf.app.flags.DEFINE_xxx()就是添加命令行的optional argument(可选参数),而tf.app.flags.FLAGS可以从对应的命令行参数取出参数。

import tensorflow as tf

# 第一个是参数名称,第二个参数是默认值,第三个是参数描述
tf.app.flags.DEFINE_float('float_name', 0.01, 'input a float')
tf.app.flags.DEFINE_string('str_name', 'def_v_1', "descrip1")
tf.app.flags.DEFINE_integer('int_name', 10, "descript2")
tf.app.flags.DEFINE_boolean('bool_name', False, "descript3") FLAGS = tf.app.flags.FLAGS # 必须带参数,否则:'TypeError: main() takes no arguments (1 given)'; main的参数名随意定义,无要求
def main(_):
print(FLAGS.float_name)
print(FLAGS.str_name)
print(FLAGS.int_name)
print(FLAGS.bool_name) if __name__ == '__main__':
tf.app.run() # 执行main函数

  

执行:

(tf_learn) [@l_106 ~/ssd-balancap]$ python exc2.py
0.01
def_v_1
10
False
(tf_learn) [@l_106 ~/ssd-balancap]$ python exc2.py --float_name 0.6 --str_name test_str --int_name 99 --bool_name True
0.6
test_str
99
True

2、slim

导入

import tensorflow.contrib.slim as slim

arg_scope:用来控制每一层的默认超参数的。

定义变量

变量分为两类:模型变量和局部变量。局部变量是不作为模型参数保存的,而模型变量会再save的时候保存下来。这个玩过tensorflow的人都会明白,诸如global_step之类的就是局部变量。slim中可以写明变量存放的设备,正则和初始化规则。还有获取变量的函数也需要注意一下,get_variables是返回所有的变量。

定义卷积层:

input = [1,224,224,3]
#tensorflow
with tf.name_scope('conv1_1') as scope:
kernel = tf.Variable(tf.truncated_normal([3, 3, 64, 128], dtype=tf.float32,
stddev=1e-1), name='weights')
conv = tf.nn.conv2d(input, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[128], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(bias, name=scope)
#slim
net = slim.conv2d(input, 128, [3, 3], scope='conv1_1')

repeat操作:

repeat操作可以减少代码量。

net = ''
#原版
net = slim.conv2d(net, 256, [3, 3], scope='conv3_1')
net = slim.conv2d(net, 256, [3, 3], scope='conv3_2')
net = slim.conv2d(net, 256, [3, 3], scope='conv3_3')
net = slim.max_pool2d(net, [2, 2], scope='pool2')
#repeat简化版
net = slim.repeat(net, 3, slim.conv2d, 256, [3, 3], scope='conv3')
net = slim.max_pool2d(net, [2, 2], scope='pool2')

stack操作:

stack是处理卷积核或者输出不一样的情况。

#普通版
x = slim.fully_connected(x, 32, scope='fc/fc_1')
x = slim.fully_connected(x, 64, scope='fc/fc_2')
x = slim.fully_connected(x, 128, scope='fc/fc_3')
#stack简化版
slim.stack(x, slim.fully_connected, [32, 64, 128], scope='fc') #普通版:
x = slim.conv2d(x, 32, [3, 3], scope='core/core_1')
x = slim.conv2d(x, 32, [1, 1], scope='core/core_2')
x = slim.conv2d(x, 64, [3, 3], scope='core/core_3')
x = slim.conv2d(x, 64, [1, 1], scope='core/core_4')
#stack简化版:
slim.stack(x, slim.conv2d, [(32, [3, 3]), (32, [1, 1]), (64, [3, 3]), (64, [1, 1])], scope='core')

argscope:

#普通版
net = slim.conv2d(inputs, 64, [11, 11], 4, padding='SAME',
weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
weights_regularizer=slim.l2_regularizer(0.0005), scope='conv1')
net = slim.conv2d(net, 128, [11, 11], padding='VALID',
weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
weights_regularizer=slim.l2_regularizer(0.0005), scope='conv2')
net = slim.conv2d(net, 256, [11, 11], padding='SAME',
weights_initializer=tf.truncated_normal_initializer(stddev=0.01),
weights_regularizer=slim.l2_regularizer(0.0005), scope='conv3')
#arg_scope简化版
with slim.arg_scope([slim.conv2d], padding='SAME',
weights_initializer=tf.truncated_normal_initializer(stddev=0.01),\
weights_regularizer=slim.l2_regularizer(0.0005)):
net = slim.conv2d(inputs, 64, [11, 11], scope='conv1')
net = slim.conv2d(net, 128, [11, 11], padding='VALID', scope='conv2')
net = slim.conv2d(net, 256, [11, 11], scope='conv3')

arg_scope的作用范围内,是定义了指定层的默认参数,若想特别指定某些层的参数,可以重新赋值(相当于重写),如上倒数第二行代码。那如果除了卷积层还有其他层呢?那就要如下定义:

tensorflow高级库的更多相关文章

  1. 使用TensorFlow v2库实现线性回归

    使用TensorFlow v2库实现线性回归 此示例使用简单方法来更好地理解训练过程背后的所有机制 from __future__ import absolute_import, division, ...

  2. Tensorflow高级封装

    Tensorflow比较灵活,但是它提供的操作比较低级,于是许多封装库应运而生. slim 导入方式 import tensorflow as tf import tensorflow.contrib ...

  3. 使用TensorFlow高级别的API进行编程

    这里涉及到的高级别API主要是使用Estimator类来编写机器学习的程序,此外你还需要用到一些数据导入的知识. 为什么使用Estimator Estimator类是定义在tf.estimator.E ...

  4. windows编译tensorflow c++库

    1. 准备 windows 10系统.3.6GHz cpu.16G 内存 visual studio 2017 or 2015 下载安装git 下载安装cmake 下载安装swigwin 如果不需要p ...

  5. 15 个让新手爱不释手的 Python 高级库

    为什么我喜欢 Python ? 对于初学者来说,这是一种简单易学的编程语言:另一个原因:大量开箱即用的第三方库,正是 23 万个由用户提供的软件包使得 Python 真正强大和流行 在本文中,我挑选了 ...

  6. tensorflow 高级api使用分布式之配置

    """Constructor. Sets the properties `cluster_spec`, `is_chief`, `master` (if `None` i ...

  7. TensorFlow高级API(tf.contrib.learn)及可视化工具TensorBoard的使用

    一.TensorFlow高层次机器学习API (tf.contrib.learn) 1.tf.contrib.learn.datasets.base.load_csv_with_header 加载cs ...

  8. tensorflow 问题库

    1.module 'tensorflow.python.ops.nn' has no attribute 'rnn_cell' 将tf.nn.rnn_cell ->tf.contrib.rnn

  9. Python之高级库socketserver

    socket并不能多并发,只能支持一个用户,socketserver 简化了编写网络服务程序的任务,socketserver是socket的在封装.socketserver在python2中为Sock ...

随机推荐

  1. C/C++ 多继承{虚基类,虚继承,构造顺序,析构顺序}

    C/C++:一个基类继承和多个基类继承的区别 1.对多个基类继承会出现类之间嵌套时出现的同名问题,如果同名变量或者函数出现不在同一层次,则底层派生隐藏外层比如继承基类的同名变量和函数,不会出现二义性, ...

  2. java基础-System类常用方法介绍

    java基础-System类常用方法介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.System类概念 在API中system类介绍的比较简单,我们给出定义,system中 ...

  3. AutoLayout中使用UIScrollView

    UIScrollView 在 Auto Layout 是一个很特殊的 view,对于 UIScrollView 的 subview 来说,它的 leading/trailing/top/bottom ...

  4. [USACO07FEB]牛的词汇The Cow Lexicon

    https://daniu.luogu.org/problemnew/show/P2875 dp[i]表示前i-1个字符,最少删除多少个 枚举位置i, 如果打算从i开始匹配, 枚举单词j,计算从i开始 ...

  5. 2017 清北济南考前刷题Day 6 morning

    T1 贪心 10 元先找5元 20元 先找10+5,再找3张5 #include<cstdio> using namespace std; int m5,m10,m20; int main ...

  6. HDU 2176 基础NIM 输出方案

    普通的NIM,然后问先手必胜第一次操作后的所有局面. 对于一个必胜局面只要转变局面SG值为必败(SG=0)留给后手就行了. /** @Date : 2017-10-13 21:39:13 * @Fil ...

  7. CSS命名方法(笔记)

    划分CSS的一些方法(不同的划分方法都有利与弊,要记住,最合适项目的才是最好的): ①按功能划分:将字体的CSS存放在font.css.将控制颜色的CSS存放在color.css.将控制布局的CSS存 ...

  8. codeforces997C Sky full of stars

    传送门:http://codeforces.com/problemset/problem/997/C [题解] 注意在把$i=0$或$j=0$分开考虑的时候,3上面的指数应该是$n(n-j)+j$ 至 ...

  9. SearchSploit

    在我们的GitHub上的Exploit Database存储库中包含一个名为"searchsploit"的Exploit-DB的命令行搜索工具,该工具还允许您在任何地方随身携带一个 ...

  10. 天梯赛 L2-013. (并查集) 红色警报

    题目链接 题目描述 战争中保持各个城市间的连通性非常重要.本题要求你编写一个报警程序,当失去一个城市导致国家被分裂为多个无法连通的区域时,就发出红色警报.注意:若该国本来就不完全连通,是分裂的k个区域 ...