伸展树的实现——c++
一、介绍
伸展树(Splay Tree)是一种二叉排序树,它能在O(log n)内完成插入、查找和删除操作。它由Daniel Sleator和Robert Tarjan创造。
(01) 伸展树属于二叉查找树,即它具有和二叉查找树一样的性质:假设x为树中的任意一个结点,x节点包含关键字key,节点x的key值记为key[x]。如果y是x的左子树中的一个结点,则key[y] <= key[x];如果y是x的右子树的一个结点,则key[y] >= key[x]。
(02) 除了拥有二叉查找树的性质之外,伸展树还具有的一个特点是:当某个节点被访问时,伸展树会通过旋转使该节点成为树根。这样做的好处是,下次要访问该节点时,能够迅速的访问到该节点。
假设想要对一个二叉查找树执行一系列的查找操作。为了使整个查找时间更小,被查频率高的那些条目就应当经常处于靠近树根的位置。于是想到设计一个简单方法,在每次查找之后对树进行重构,把被查找的条目搬移到离树根近一些的地方。伸展树应运而生,它是一种自调整形式的二叉查找树,它会沿着从某个节点到树根之间的路径,通过一系列的旋转把这个节点搬移到树根去。
相比于"二叉查找树"和"AVL树",学习伸展树时需要重点关注是"伸展树的旋转算法"。
二、伸展树的c++实现
1. 基本定义
1.1 节点
template <class T>
class SplayTreeNode{
public:
T key; // 关键字(键值)
SplayTreeNode *left; // 左孩子
SplayTreeNode *right; // 右孩子 SplayTreeNode():left(NULL),right(NULL) {} SplayTreeNode(T value, SplayTreeNode *l, SplayTreeNode *r):
key(value), left(l),right(r) {}
};
SplayTreeNode是伸展树节点对应的类。它包括的几个组成元素:
(01) key -- 是关键字,是用来对伸展树的节点进行排序的。
(02) left -- 是左孩子。
(03) right -- 是右孩子。
1.2 伸展树
template <class T>
class SplayTree {
private:
SplayTreeNode<T> *mRoot; // 根结点 public:
SplayTree();
~SplayTree(); // 前序遍历"伸展树"
void preOrder();
// 中序遍历"伸展树"
void inOrder();
// 后序遍历"伸展树"
void postOrder(); // (递归实现)查找"伸展树"中键值为key的节点
SplayTreeNode<T>* search(T key);
// (非递归实现)查找"伸展树"中键值为key的节点
SplayTreeNode<T>* iterativeSearch(T key); // 查找最小结点:返回最小结点的键值。
T minimum();
// 查找最大结点:返回最大结点的键值。
T maximum(); // 旋转key对应的节点为根节点,并返回值为根节点。
void splay(T key); // 将结点(key为节点键值)插入到伸展树中
void insert(T key); // 删除结点(key为节点键值)
void remove(T key); // 销毁伸展树
void destroy(); // 打印伸展树
void print();
private: // 前序遍历"伸展树"
void preOrder(SplayTreeNode<T>* tree) const;
// 中序遍历"伸展树"
void inOrder(SplayTreeNode<T>* tree) const;
// 后序遍历"伸展树"
void postOrder(SplayTreeNode<T>* tree) const; // (递归实现)查找"伸展树x"中键值为key的节点
SplayTreeNode<T>* search(SplayTreeNode<T>* x, T key) const;
// (非递归实现)查找"伸展树x"中键值为key的节点
SplayTreeNode<T>* iterativeSearch(SplayTreeNode<T>* x, T key) const; // 查找最小结点:返回tree为根结点的伸展树的最小结点。
SplayTreeNode<T>* minimum(SplayTreeNode<T>* tree);
// 查找最大结点:返回tree为根结点的伸展树的最大结点。
SplayTreeNode<T>* maximum(SplayTreeNode<T>* tree); // 旋转key对应的节点为根节点,并返回值为根节点。
SplayTreeNode<T>* splay(SplayTreeNode<T>* tree, T key); // 将结点(z)插入到伸展树(tree)中
SplayTreeNode<T>* insert(SplayTreeNode<T>* &tree, SplayTreeNode<T>* z); // 删除伸展树(tree)中的结点(键值为key),并返回被删除的结点
SplayTreeNode<T>* remove(SplayTreeNode<T>* &tree, T key); // 销毁伸展树
void destroy(SplayTreeNode<T>* &tree); // 打印伸展树
void print(SplayTreeNode<T>* tree, T key, int direction);
};
playTree是伸展树对应的类。它包括根节点mRoot和伸展树的函数接口。
2. 旋转(重点)
/*
* 旋转key对应的节点为根节点,并返回值为根节点。
*
* 注意:
* (a):伸展树中存在"键值为key的节点"。
* 将"键值为key的节点"旋转为根节点。
* (b):伸展树中不存在"键值为key的节点",并且key < tree->key。
* b-1 "键值为key的节点"的前驱节点存在的话,将"键值为key的节点"的前驱节点旋转为根节点。
* b-2 "键值为key的节点"的前驱节点存在的话,则意味着,key比树中任何键值都小,那么此时,将最小节点旋转为根节点。
* (c):伸展树中不存在"键值为key的节点",并且key > tree->key。
* c-1 "键值为key的节点"的后继节点存在的话,将"键值为key的节点"的后继节点旋转为根节点。
* c-2 "键值为key的节点"的后继节点不存在的话,则意味着,key比树中任何键值都大,那么此时,将最大节点旋转为根节点。
*/
template <class T>
SplayTreeNode<T>* SplayTree<T>::splay(SplayTreeNode<T>* tree, T key)
{
SplayTreeNode<T> N, *l, *r, *c; if (tree == NULL)
return tree; N.left = N.right = NULL;
l = r = &N; for (;;)
{
if (key < tree->key)
{
if (tree->left == NULL)
break;
if (key < tree->left->key)
{
c = tree->left; /* rotate right */
tree->left = c->right;
c->right = tree;
tree = c;
if (tree->left == NULL)
break;
}
r->left = tree; /* link right */
r = tree;
tree = tree->left;
}
else if (key > tree->key)
{
if (tree->right == NULL)
break;
if (key > tree->right->key)
{
c = tree->right; /* rotate left */
tree->right = c->left;
c->left = tree;
tree = c;
if (tree->right == NULL)
break;
}
l->right = tree; /* link left */
l = tree;
tree = tree->right;
}
else
{
break;
}
} l->right = tree->left; /* assemble */
r->left = tree->right;
tree->left = N.right;
tree->right = N.left; return tree;
} template <class T>
void SplayTree<T>::splay(T key)
{
mRoot = splay(mRoot, key);
}
上面的代码的作用:将"键值为key的节点"旋转为根节点,并返回根节点。它的处理情况共包括:
(a):伸展树中存在"键值为key的节点"。
将"键值为key的节点"旋转为根节点。
(b):伸展树中不存在"键值为key的节点",并且key < tree->key。
b-1) "键值为key的节点"的前驱节点存在的话,将"键值为key的节点"的前驱节点旋转为根节点。
b-2) "键值为key的节点"的前驱节点存在的话,则意味着,key比树中任何键值都小,那么此时,将最小节点旋转为根节点。
(c):伸展树中不存在"键值为key的节点",并且key > tree->key。
c-1) "键值为key的节点"的后继节点存在的话,将"键值为key的节点"的后继节点旋转为根节点。
c-2) "键值为key的节点"的后继节点不存在的话,则意味着,key比树中任何键值都大,那么此时,将最大节点旋转为根节点。
下面列举个例子分别对a进行说明。
在下面的伸展树中查找10,共包括"右旋" --> "右链接" --> "组合"这3步。
(01) 右旋
对应代码中的"rotate right"部分
(02) 右链接
对应代码中的"link right"部分
(03) 组合
对应代码中的"assemble"部分
提示:如果在上面的伸展树中查找"70",则正好与"示例1"对称,而对应的操作则分别是"rotate left", "link left"和"assemble"。
其它的情况,例如"查找15是b-1的情况,查找5是b-2的情况"等等,这些都比较简单,大家可以自己分析。
3. 插入节点
/*
* 将结点插入到伸展树中,并返回根节点
*
* 参数说明:
* tree 伸展树的根结点
* key 插入的结点的键值
* 返回值:
* 根节点
*/
template <class T>
SplayTreeNode<T>* SplayTree<T>::insert(SplayTreeNode<T>* &tree, SplayTreeNode<T>* z)
{
SplayTreeNode<T> *y = NULL;
SplayTreeNode<T> *x = tree; // 查找z的插入位置
while (x != NULL)
{
y = x;
if (z->key < x->key)
x = x->left;
else if (z->key > x->key)
x = x->right;
else
{
cout << "不允许插入相同节点(" << z->key << ")!" << endl;
delete z;
return tree;
}
} if (y==NULL)
tree = z;
else if (z->key < y->key)
y->left = z;
else
y->right = z; return tree;
} template <class T>
void SplayTree<T>::insert(T key)
{
SplayTreeNode<T> *z=NULL; // 如果新建结点失败,则返回。
if ((z=new SplayTreeNode<T>(key,NULL,NULL)) == NULL)
return ; // 插入节点
mRoot = insert(mRoot, z);
// 将节点(key)旋转为根节点
mRoot = splay(mRoot, key);
}
4. 删除节点
/*
* 删除结点(节点的键值为key),返回根节点
*
* 参数说明:
* tree 伸展树的根结点
* key 待删除结点的键值
* 返回值:
* 根节点
*/
template <class T>
SplayTreeNode<T>* SplayTree<T>::remove(SplayTreeNode<T>* &tree, T key)
{
SplayTreeNode<T> *x; if (tree == NULL)
return NULL; // 查找键值为key的节点,找不到的话直接返回。
if (search(tree, key) == NULL)
return tree; // 将key对应的节点旋转为根节点。
tree = splay(tree, key); if (tree->left != NULL)
{
// 将"tree的前驱节点"旋转为根节点
x = splay(tree->left, key);
// 移除tree节点
x->right = tree->right;
}
else
x = tree->right; delete tree; return x; } template <class T>
void SplayTree<T>::remove(T key)
{
mRoot = remove(mRoot, key);
}
remove(key)是外部接口,remove(tree, key)是内部接口。
remove(tree, key)的作用是:删除伸展树中键值为key的节点。
它会先在伸展树中查找键值为key的节点。若没有找到的话,则直接返回。若找到的话,则将该节点旋转为根节点,然后再删除该节点。
本文来自http://www.cnblogs.com/skywang12345/p/3604238.html
伸展树的实现——c++的更多相关文章
- Splay伸展树学习笔记
Splay伸展树 有篇Splay入门必看文章 —— CSDN链接 经典引文 空间效率:O(n) 时间效率:O(log n)插入.查找.删除 创造者:Daniel Sleator 和 Robert Ta ...
- 纸上谈兵:伸展树(splay tree)
作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 我们讨论过,树的搜索效率与树的深度有关.二叉搜索树的深度可能为n,这种情况下,每次 ...
- SplayTree伸展树的非递归实现(自底向上)
Splay Tree 是二叉查找树的一种,它与平衡二叉树.红黑树不同的是,Splay Tree从不强制地保持自身的平衡,每当查找到某个节点n的时候,在返回节点n的同时,Splay Tree会将节点n旋 ...
- 伸展树(一)之 图文解析 和 C语言的实现
概要 本章介绍伸展树.它和"二叉查找树"和"AVL树"一样,都是特殊的二叉树.在了解了"二叉查找树"和"AVL树"之后, ...
- 伸展树(二)之 C++的实现
概要 上一章介绍了伸展树的基本概念,并通过C语言实现了伸展树.本章是伸展树的C++实现,后续再给出Java版本.还是那句老话,它们的原理都一样,择其一了解即可. 目录1. 伸展树的介绍2. 伸展树的C ...
- 伸展树(三)之 Java的实现
概要 前面分别通过C和C++实现了伸展树,本章给出伸展树的Java版本.基本算法和原理都与前两章一样.1. 伸展树的介绍2. 伸展树的Java实现(完整源码)3. 伸展树的Java测试程序 转载请注明 ...
- hdu1890 伸展树(区间反转)
对于大神来说这题是水题.我搞这题花了快2天. 伸展树的优点有什么,就是树不管你怎么旋转序列是不会改变得,并且你要使区间反转,只要把第k大的点转到根结点,那么它的左子树就是要交换的区间[l,r),然后交 ...
- POJ 3580 (伸展树)
题目链接: http://poj.org/problem?id=3580 题目大意:对一个序列进行以下六种操作.输出MIN操作的结果. 解题思路: 六个操作,完美诠释了伸展树有多么吊.注意,默认使用L ...
- Splay 伸展树
废话不说,有篇论文可供参考:杨思雨:<伸展树的基本操作与应用> Splay的好处可以快速分裂和合并. ===============================14.07.26更新== ...
- UVa 11922 - Permutation Transformer 伸展树
第一棵伸展树,各种调试模板……TVT 对于 1 n 这种查询我处理的不太好,之前序列前后没有添加冗余节点,一直Runtime Error. 后来加上冗余节点之后又出了别的状况,因为多了 0 和 n+1 ...
随机推荐
- debuginfo介绍
一.简介 深入理解debuginfo http://blog.csdn.net/chinainvent/article/details/24129311?reload 关于DWARF http://w ...
- loadrunner--常用函数列表【转】
1. Intweb_reg_save_param("参数名","LB=左边界","RB=右边界",LAST);/注册函数,在参 ...
- [转]docker 基本原理及快速入门
版权声明:原创作品, 来自海牛部落-青牛,http://hainiubl.com/topics/13 什么是docker Docker 是一个开源项目,诞生于 2013 年初,最初是 dotCloud ...
- connect strings sql server
https://www.connectionstrings.com/sql-server/ Server=myServerAddress[,port];Database=myDataBase;User ...
- 解决Android启动显示空白界面的问题
Android程序启动时,第一个看的界面并不是我们的指定的第一个Activity界面,而是显示了一个空白的界面,带标题栏的,但是界面什么内容都没有,这个界面只显示不到1秒左右的时间就会切换到我们的第一 ...
- Tomcat之Windows环境下配置多个服务器
在应对多项目多端口的情况配置一个服务器是远不能满足开发条件的.例如微信公众号回调域名只接受80端口,而其他项目一般为默认的8080或者自定义的其他的端口. 废话多说,直入主题 准备条件:tomcat文 ...
- 为程序使用内存缓存(MemoryCache)
为了程序的灵活性,可能为程序使用了XML等外部文件存储配置,但也有可能文件内容会被频繁读取,为了减少磁盘的读取次数,提高程序性能,可以将频繁读取的配置文件缓存到内存中,加速配置的读取.并且需要可以在配 ...
- HDU 1040 As Easy As A+B (排序。。。水题)
题意:给定n个数,让你从小到大排序. 析:不说什么了. 代码如下: #include <cstdio> #include <iostream> #include <cst ...
- Kolakoski
Kolakoski序列:我们知道的还是太少 上帝创造了整数,其余的则是我们人类的事了.正因为如此,质数.完全数.Fibonacci 数之类的数列才会让数学家们如痴如醉,因为它们的存在是如此自然,没有任 ...
- log4j日志文件路径设置
假设有如下标准化的目录结构: $HOME |-- log |-- conf |-- bin |-- lib |-- data jar包放在lib目录,启动脚本放在bin目录,日志文件放在log目录,配 ...