Description

有一个nm列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态。要求第i行第j列的格子只能参与mi,j次交换。

Input

第一行包含两个整数nm(1<=n, m<=20)。以下n行为初始状态,每行为一个包含m个字符的01串,其中0表示黑色棋子,1表示白色棋子。以下n行为目标状态,格式同初始状态。以下n行每行为一个包含m个0~9数字的字符串,表示每个格子参与交换的次数上限。

Output

输出仅一行,为最小交换总次数。如果无解,输出-1。


写了一个很假的做法

但是居然正解也是这样的??



好吧好吧

那这题也太丧病了


先想一下这道题的基本建模思路,就是把它想象成一些黑点在一张图上流动,如果一个点初始时是黑色就从源点流一个流量一的边,如果遇到一个目标是黑色的点就可以流去汇点

初始版本 1.0 (甚至能得60分)

然后考虑拆两个点

没前途啊

考虑到一个位置上换来一个点然后再换走的话这个位置被换了2次

但是这个模型没法处理啊。。。

优化版本 1.5

拆成3个点!

怎么说呢。。。比1.0还没前途啊

因为如果这个点本来是黑色的但是它的流量是1

那么它就流不过去了。。。

正解 2.0

如果这个点就是黑色的就把2到3的流量改成(流量上限+1)/2不就完了

然后就喜提满分了??


#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#define MP make_pair
#define TS top().second
#define M 1000001
#define N 50000
//#define gc getchar
using namespace std; priority_queue<pair<int,int> >q;
int uu,a[M],t,n,m,k,ver[M],edge[M],head[N],nex[M],cnt=1,d[N],h[N],c[M],g[N],x,y,z,s,b[N],cur[N],ans,cost,w[M];
void add(int x,int y,int co,int z)
{
ver[++cnt]=y; nex[cnt]=head[x]; head[x]=cnt; edge[cnt]=z; c[cnt]=co;
ver[++cnt]=x; nex[cnt]=head[y]; head[y]=cnt; edge[cnt]=0; c[cnt]=-co;
} bool dji()
{
while(q.size()) q.pop();
memset(d,0,sizeof(d)); memset(g,0x3f,sizeof(g)); memset(b,0,sizeof(b));
d[0]=1; g[0]=0; q.push(MP(0,0));
while(q.size())
{
while(q.size() && b[q.TS]) q.pop();
if(!q.size()) break;
int x=q.TS; q.pop(); b[x]=1;
for(int i=head[x];i;i=nex[i])
if(edge[i] && g[ver[i]]>g[x]+c[i]+h[x]-h[ver[i]])
{
g[ver[i]]=g[x]+c[i]+h[x]-h[ver[i]];
d[ver[i]]=d[x]+1;
q.push(MP(-g[ver[i]],ver[i]));
}
}
if(g[t]<0x3f3f3f3f) return 1;
return 0;
} int dinic(int x,int flow)
{
if(x==t || !flow) return flow;
int re=flow, k;
for(int& i=cur[x];i && re;i=nex[i])
if(edge[i] && d[ver[i]]==d[x]+1 && g[ver[i]]==g[x]+c[i]+h[x]-h[ver[i]])
{
k=dinic(ver[i],min(re,edge[i]));
re-=k; edge[i]-=k; edge[i^1]+=k;
if(!k) d[ver[i]]=0;
}
return flow-re;
} int main()
{
scanf("%d%d",&n,&m); t=n*m*3+1;
for(int i=0;i<n;i++)
for(int j=1;j<=m;j++)
{
scanf("%1ld",&k);
if(k) a[i*m+j]=1, uu+=1;
}
for(int i=0;i<n;i++)
for(int j=1;j<=m;j++)
{
scanf("%1ld",&k);
if(k) w[i*m+j]=1, uu-=1;
if(i) add(i*m+j+n*m*2,(i-1)*m+j,1,0x3f3f3f3f);
if(j!=1) add(i*m+j+n*m*2,i*m+j-1,1,0x3f3f3f3f);
if(i && j!=1) add(i*m+j+n*m*2,(i-1)*m+j-1,1,0x3f3f3f3f);
if(i && j!=m) add(i*m+j+n*m*2,(i-1)*m+j+1,1,0x3f3f3f3f);
if(j!=m) add(i*m+j+n*m*2,i*m+j+1,1,0x3f3f3f3f);
if(i!=n-1) add(i*m+j+n*m*2,(i+1)*m+j,1,0x3f3f3f3f);
if(j!=m && i!=n-1) add(i*m+j+n*m*2,(i+1)*m+j+1,1,0x3f3f3f3f);
if(j!=1 && i!=n-1) add(i*m+j+n*m*2,(i+1)*m+j-1,1,0x3f3f3f3f);
}
if(uu!=0){printf("-1"); return 0;}
for(int i=1;i<=n*m;i++)
{
if(w[i]) add(i+n*m,t,0,1);
if(a[i]) add(0,i,0,1);
}
for(int i=0;i<n;i++)
for(int j=1;j<=m;j++)
{
scanf("%1ld",&k);
if(k)add(i*m+j,i*m+j+n*m,0,k);
if(k && (w[i*m+j]||a[i*m+j])) add(i*m+j+n*m,i*m+j+n*m*2,0,(k+1)/2);
else add(i*m+j+n*m,i*m+j+n*m*2,0,k/2);
} while(dji())
{
memcpy(cur,head,sizeof(head)); z=ans;
while(k=dinic(0,0x3f3f3f3f)) ans+=k;
for(int i=1;i<=t;i++) h[i]+=g[i];
cost+=(ans-z)*h[t];
}
printf("%d",cost);
}

2668: [cqoi2012]交换棋子的更多相关文章

  1. BZOJ 2668: [cqoi2012]交换棋子

    2668: [cqoi2012]交换棋子 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1112  Solved: 409[Submit][Status ...

  2. BZOJ 2668 [cqoi2012]交换棋子 | 最小费用最大流

    传送门 BZOJ 2668 题解 同时分别限制流入和流出次数,所以把一个点拆成三个:入点in(x).中间点mi(x).出点ou(x). 如果一个格子x在初始状态是黑点,则连(S, mi(x), 1, ...

  3. BZOJ.2668.[CQOI2012]交换棋子(费用流zkw)

    题目链接 首先黑白棋子的交换等价于黑棋子在白格子图上移动,都到达指定位置. 在这假设我们知道这题用网络流做. 那么黑棋到指定位置就是一条路径,考虑怎么用流模拟出这条路径. 我们发现除了路径的起点和终点 ...

  4. BZOJ2668: [cqoi2012]交换棋子

    题解: 可以戳这里:http://www.cnblogs.com/zig-zag/archive/2013/04/21/3033485.html 其实自己yy一下就知道这样建图的正确性了. 感觉太神奇 ...

  5. [cqoi2012]交换棋子

      2668: [cqoi2012]交换棋子 Time Limit: 3 Sec  Memory Limit: 128 MBSubmit: 1334  Solved: 518[Submit][Stat ...

  6. 【BZOJ2668】[cqoi2012]交换棋子 费用流

    [BZOJ2668][cqoi2012]交换棋子 Description 有一个n行m列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第i行第j列 ...

  7. 洛谷 P3159(BZOJ 2668)[CQOI2012]交换棋子

    有一个\(n\)行\(m\)列的黑白棋盘,你每次可以交换两个相邻格子(相邻是指有公共边或公共顶点)中的棋子,最终达到目标状态.要求第\(i\)行第\(j\)列的格子只能参与\(m[i][j]\)次交换 ...

  8. BZOJ2668:[CQOI2012]交换棋子——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=2668 https://www.luogu.org/problemnew/show/P3159#sub ...

  9. P3159 [CQOI2012]交换棋子

    思路 相当神奇的费用流拆点模型 最开始我想到把交换黑色棋子看成一个流流动的过程,流从一个节点流向另一个节点就是交换两个节点,然后把一个位置拆成两个点限制流量,然后就有了这样的建图方法 S向所有初始是黑 ...

随机推荐

  1. Emgucv(二)Emgucv和Aforge录制视频

    一.Emgucv录制视频 Emgucv中的Capture类可以完成视频文件的读取,利用EmguCV播放视频的原理是:将视频看作图片,用capture获取抓取通道,通过不断的调用{frame = cap ...

  2. 哈夫曼编码(Huffman coding)的那些事,(编码技术介绍和程序实现)

    前言 哈夫曼编码(Huffman coding)是一种可变长的前缀码.哈夫曼编码使用的算法是David A. Huffman还是在MIT的学生时提出的,并且在1952年发表了名为<A Metho ...

  3. mysql网页客户端工具

    mysql数据库的远程管理,云服务器数据库的管理监控等都可以使用 TreeSoft,  TreeSoft数据库管理系统使用JAVA开发,采用稳定通用的springMVC +JDBC架构,实现基于WEB ...

  4. 一文总结学习 Python 的 14 张思维导图

    本文主要涵盖了 Python 编程的核心知识(暂不包括标准库及第三方库,后续会发布相应专题的文章). 首先,按顺序依次展示了以下内容的一系列思维导图:基础知识,数据类型(数字,字符串,列表,元组,字典 ...

  5. js-权威指南学习笔记15.3

    1.如果要明确地选取一个表单元素,可以索引表单对象的elements属性:document.forms.address.elements.street--一个name为address的form下的na ...

  6. php_soap扩展应用

    WebServices简介 先给出一个概念 SOA ,即Service Oriented Architecture ,中文一般理解为面向服务的架构, 既然说是一种架构的话,所以一般认为 SOA 是包含 ...

  7. JS计算字符串长度(兼容后端PHP)

    /*** 计算字符串长度* 参数是要计算的字符串* 返回值当前字符串的长度*/function charactersLen (words) { let tempMapWordNum = {} let ...

  8. FFmpeg实现将图片转换为视频

    ##名称:ffmpeg实现将图片转换为视频 ##平台:ubuntu(已经安装好了ffmpeg工具) ##日期:2017年12月10日 简介: 因为学习需要,需要将连续图片转换成视频,昨天和今天早上用o ...

  9. ios 为什么拖拽的控件为weak 手写的strong

    ib拖拽的控件自动声明为weak  而平时自己手写的为strong 在ios中,对象默认都是强引用,不是强引用赋值后会立即释放 ib声明weak 不立即被释放 简单说就是 1.声明的弱引用指向强引用 ...

  10. window 命令行

    清屏 cls 启动服务 net start 服务名(nexus.mysql) 关闭服务 net stop 服务名(nexus.mysql) 删除服务 sc delete 服务名 如果服务名有空格,加引 ...