概述

GROUPING SETS,GROUPING__ID,CUBE,ROLLUP

这几个分析函数通常用于OLAP中,不能累加,而且需要根据不同维度上钻和下钻的指标统计,比如,分小时、天、月的UV数。

数据准备

数据格式

2015-03,2015-03-10,cookie1
2015-03,2015-03-10,cookie5
2015-03,2015-03-12,cookie7
2015-04,2015-04-12,cookie3
2015-04,2015-04-13,cookie2
2015-04,2015-04-13,cookie4
2015-04,2015-04-16,cookie4
2015-03,2015-03-10,cookie2
2015-03,2015-03-10,cookie3
2015-04,2015-04-12,cookie5
2015-04,2015-04-13,cookie6
2015-04,2015-04-15,cookie3
2015-04,2015-04-15,cookie2
2015-04,2015-04-16,cookie1

创建表

use cookie;
drop table if exists cookie5;
create table cookie5(month string, day string, cookieid string)
row format delimited fields terminated by ',';
load data local inpath "/home/hadoop/cookie5.txt" into table cookie5;
select * from cookie5;

玩一玩GROUPING SETS和GROUPING__ID

说明

在一个GROUP BY查询中,根据不同的维度组合进行聚合,等价于将不同维度的GROUP BY结果集进行UNION ALL

GROUPING__ID,表示结果属于哪一个分组集合。

查询语句

select
month,
day,
count(distinct cookieid) as uv,
GROUPING__ID
from cookie.cookie5
group by month,day
grouping sets (month,day)
order by GROUPING__ID;

等价于

SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5 GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5 GROUP BY day

查询结果

结果说明

第一列是按照month进行分组

第二列是按照day进行分组

第三列是按照month或day分组是,统计这一组有几个不同的cookieid

第四列grouping_id表示这一组结果属于哪个分组集合,根据grouping sets中的分组条件month,day,1是代表month,2是代表day

再比如

SELECT  month, day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM cookie5
GROUP BY month,day
GROUPING SETS (month,day,(month,day))
ORDER BY GROUPING__ID;

等价于

SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5 GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5 GROUP BY day
UNION ALL
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM cookie5 GROUP BY month,day

玩一玩CUBE

说明

根据GROUP BY的维度的所有组合进行聚合

查询语句

SELECT  month, day,
COUNT(DISTINCT cookieid) AS uv,
GROUPING__ID
FROM cookie5
GROUP BY month,day
WITH CUBE
ORDER BY GROUPING__ID;

等价于

SELECT NULL,NULL,COUNT(DISTINCT cookieid) AS uv,0 AS GROUPING__ID FROM cookie5
UNION ALL
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM cookie5 GROUP BY month
UNION ALL
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM cookie5 GROUP BY day
UNION ALL
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM cookie5 GROUP BY month,day

查询结果

玩一玩ROLLUP

说明

是CUBE的子集,以最左侧的维度为主,从该维度进行层级聚合

查询语句

-- 比如,以month维度进行层级聚合

SELECT  month, day, COUNT(DISTINCT cookieid) AS uv, GROUPING__ID
FROM cookie5
GROUP BY month,day WITH ROLLUP ORDER BY GROUPING__ID;

可以实现这样的上钻过程:
月天的UV->月的UV->总UV

--把month和day调换顺序,则以day维度进行层级聚合:

可以实现这样的上钻过程:
天月的UV->天的UV->总UV
(这里,根据天和月进行聚合,和根据天聚合结果一样,因为有父子关系,如果是其他维度组合的话,就会不一样)

Hive学习之路 (十七)Hive分析窗口函数(五) GROUPING SETS、GROUPING__ID、CUBE和ROLLUP的更多相关文章

  1. Hive高阶聚合函数 GROUPING SETS、Cube、Rollup

    -- GROUPING SETS作为GROUP BY的子句,允许开发人员在GROUP BY语句后面指定多个统计选项,可以简单理解为多条group by语句通过union all把查询结果聚合起来结合起 ...

  2. Hive函数:GROUPING SETS,GROUPING__ID,CUBE,ROLLUP

    参考:lxw大数据田地:http://lxw1234.com/archives/2015/04/193.htm 数据准备: CREATE EXTERNAL TABLE test_data ( mont ...

  3. [转帖]Hive学习之路 (一)Hive初识

    Hive学习之路 (一)Hive初识 https://www.cnblogs.com/qingyunzong/p/8707885.html 讨论QQ:1586558083 目录 Hive 简介 什么是 ...

  4. Hive学习之路 (二十)Hive 执行过程实例分析

    一.Hive 执行过程概述 1.概述 (1) Hive 将 HQL 转换成一组操作符(Operator),比如 GroupByOperator, JoinOperator 等 (2)操作符 Opera ...

  5. Hive学习之路 (一)Hive初识

    Hive 简介 什么是Hive 1.Hive 由 Facebook 实现并开源 2.是基于 Hadoop 的一个数据仓库工具 3.可以将结构化的数据映射为一张数据库表 4.并提供 HQL(Hive S ...

  6. Hive学习之路 (二十一)Hive 优化策略

    一.Hadoop 框架计算特性 1.数据量大不是问题,数据倾斜是个问题 2.jobs 数比较多的作业运行效率相对比较低,比如即使有几百行的表,如果多次关联多次 汇总,产生十几个 jobs,耗时很长.原 ...

  7. Hive学习之路 (十一)Hive的5个面试题

    一.求单月访问次数和总访问次数 1.数据说明 数据字段说明 用户名,月份,访问次数 数据格式 A,, A,, B,, A,, B,, A,, A,, A,, B,, B,, A,, A,, B,, B ...

  8. Hive 学习之路(八)—— Hive 数据查询详解

    一.数据准备 为了演示查询操作,这里需要预先创建三张表,并加载测试数据. 数据文件emp.txt和dept.txt可以从本仓库的resources目录下载. 1.1 员工表 -- 建表语句 CREAT ...

  9. Hive学习之路 (二)Hive安装

    Hive的下载 下载地址http://mirrors.hust.edu.cn/apache/ 选择合适的Hive版本进行下载,进到stable-2文件夹可以看到稳定的2.x的版本是2.3.3 Hive ...

随机推荐

  1. MQ疑难杂症小记

    为什么使用消息队列? 什么业务场景,这个业务场景有个什么技术挑战,如果不用MQ可能会很麻烦,但是你现在用了MQ之后带给了你很多的好处.消息队列的常见使用场景,其实场景有很多,但是比较核心的有3个:解耦 ...

  2. Linux 添加定时任务,crontab -e 命令与直接编辑 /etc/crontab 文件

    1. 使用 crontab -e 命令编辑定时任务列表 使用这个命令编辑的定时任务列表是属于用户级别的,初次编辑后在 /var/spool/cron 目录下生成一个与用户名相同的文件,文件内容就是我们 ...

  3. oracle数据库逐步学习总结【基础一】

    原创作品,转载请在文章开头显眼位置注明出处:https://www.cnblogs.com/sunshine5683/p/10059955.html 一.oracle的基本命令 1.连接命令 用法:c ...

  4. php5.6+apache2.4+linux搭建php环境

    前言 最近突然想搭建个人博客,尽管笔者擅长java-web,但综合各种原因,于是选择了大众化的php+mysql搭建个人博客.对于php,只闻其大名,但从未学过,于是,笔者将从php环境搭建开始,到服 ...

  5. Go 语言中的 Http 路由基础

    最近在写一些 Go 语言的 Web 应用,因为 Go 语言中的 Web 应用和 Python 中的不太一样,具体的区别应该和语言的动态性是有所联系的,同时,也和语言的内置库支持有所联系,所以这就导致了 ...

  6. LeetCode CombinationSum II

    class Solution { public: vector<vector<int> > combinationSum2(vector<int> &num ...

  7. javascript数组元素全排列

    多个数组(数量不定)例如三个数组 {a,b} {1,2} {d}排列组合后为a,1,da,2,db,1,db,2,d是js的算法哦 var arr = [["a","b& ...

  8. 关于 eval 的报错 Uncaught ReferenceError: False is not defined

    var obj ={'id': 16, 'name': '管理员', 'delflag': False, 'grade': 1000000.0}VM3614:1 Uncaught ReferenceE ...

  9. eclipse中DDMS 视图中sdcard中文件导入的处理

    首先需要说明下,这里说的sdcard的权限并不是指在Android application程序中设置sdcard的权限读 取问题.而是指在DDMS看到的目录下的那个sdcard目录的权限问题.     ...

  10. Storm概念

    概念 本文列出了Storm的主要概念及相关的信息链接.讨论到的概念有: Topologies Streams Spouts Bolts Stream groupings Reliability Tas ...