题意:给出 n 个点 m 条有向边,要求选出一个环,使得这上面 点权和/边权和 最大。

析:同样转成是01分数规划的形式,F / L 要这个值最大,也就是 G(r) = F - L * r 这个值为0时,r 的值,然后对于 F > 0,很明显是 r 太小,但是不好判断,把这个值取反,这样的话就能用Bellan-Ford 来判是不是有负环了,也可以用spfa。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#include <numeric>
#define debug() puts("++++")
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
#define all 1,n,1
#define FOR(i,x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<LL, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-3;
const int maxn = 1e3 + 10;
const int maxm = 1e6 + 5;
const int mod = 1000000007;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, -1, 0, 1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
} struct Edge{
int to, val, next;
};
Edge edges[maxn*5];
int head[maxn], cnt; void addEdge(int u, int v, int c){
edges[cnt].to = v;
edges[cnt].val = c;
edges[cnt].next = head[u];
head[u] = cnt++;
}
int val[maxn];
bool inq[maxn];
int num[maxn];
double d[maxn]; bool judge(double m){
queue<int> q; q.push(1);
ms(inq, 0); ms(num, 0);
for(int i = 0; i <= n; ++i) d[i] = inf;
d[1] = 0; inq[1] = true; while(!q.empty()){
int u = q.front(); q.pop();
inq[u] = 0;
for(int i = head[u]; ~i; i = edges[i].next){
int v = edges[i].to;
if(d[v] > -val[v] + edges[i].val * m + d[u]){
d[v] = -val[v] + edges[i].val * m + d[u];
if(!inq[v]){ inq[v] = 1; q.push(v); if(++num[v] > n) return true; }
}
}
}
return false;
} int main(){
while(scanf("%d %d", &n, &m) == 2){
for(int i = 1; i <= n; ++i) scanf("%d", val + i);
ms(head, -1); cnt = 0;
while(m--){
int u, v, c;
scanf("%d %d %d", &u, &v, &c);
addEdge(u, v, c);
}
double l = 0.0, r = 1e3;
while(r - l > eps){
double m = (l + r) / 2.0;
judge(m) ? l = m : r = m;
}
printf("%.2f\n", l);
}
return 0;
}

  

POJ 3621 Sightseeing Cows (bellman-Ford + 01分数规划)的更多相关文章

  1. POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

  2. POJ 3621 Sightseeing Cows(最优比例环+SPFA检测)

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10306   Accepted: 3519 ...

  3. [POJ 3621] Sightseeing Cows

    [题目链接] http://poj.org/problem?id=3621 [算法] 01分数规划(最优比率环) [代码] #include <algorithm> #include &l ...

  4. Desert King (poj 2728 最优比率生成树 0-1分数规划)

    Language: Default Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 22113   A ...

  5. POJ 3621 Sightseeing Cows (最优比率环 01分数划分)

    题意: 给定L个点, P条边的有向图, 每个点有一个价值, 但只在第一经过获得, 每条边有一个花费, 每次经过都要付出这个花费, 在图中找出一个环, 使得价值之和/花费之和 最大 分析: 这道题其实并 ...

  6. POJ 3621 Sightseeing Cows | 01分数规划

    题目: http://poj.org/problem?id=3621 题解: 二分答案,检查有没有负环 #include<cstdio> #include<algorithm> ...

  7. POJ 3621 Sightseeing Cows 01分数规划,最优比例环的问题

    http://www.cnblogs.com/wally/p/3228171.html 题解请戳上面 然后对于01规划的总结 1:对于一个表,求最优比例 这种就是每个点位有benefit和cost,这 ...

  8. POJ 3621 Sightseeing Cows [最优比率环]

    感觉去年9月的自己好$naive$ http://www.cnblogs.com/candy99/p/5868948.html 现在不也是嘛 裸题,具体看学习笔记 二分答案之后判负环就行了 $dfs$ ...

  9. 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)

    题意 题目链接 Sol 复习一下01分数规划 设\(a_i\)为点权,\(b_i\)为边权,我们要最大化\(\sum \frac{a_i}{b_i}\).可以二分一个答案\(k\),我们需要检查\(\ ...

随机推荐

  1. ARMV7,ARMV8

    ARMV7是32位,2011年出了ARMV8,是64位架构,IPHONE5S以上都是64位架构,说明是使用ARMV8??

  2. China cuts bank reserves by $100m to cushion US tariffs

    China cuts bank reserves by $100m to cushion US tariffs中国央行定向降准释放千亿美元资金China is cutting the amount o ...

  3. JSP复习(part 3 )

    3.4.4 request对象提供了一些用来获取客户信息的方法,利用这些方法,可以获取客户端的IP地址 协议等有关信息 3.5 request对象和response对象相对应,用于响应客户请求,由服务 ...

  4. 吴裕雄 数据挖掘与分析案例实战(7)——岭回归与LASSO回归模型

    # 导入第三方模块import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sklearn import mod ...

  5. Alberta family's QR code is world's largest corn maze

    BY DARREN WEIR     SEP 10, 2012 IN ODD NEWS Link:http://www.digitaljournal.com/article/332512   Laco ...

  6. nyoj86-找球号(一) 【set 二分查找 hash】

    http://acm.nyist.net/JudgeOnline/problem.php?pid=86 找球号(一) 时间限制:3000 ms  |  内存限制:65535 KB 难度:3   描述 ...

  7. Windows系统之hosts文件

    对于Hosts文件相信很多Win7的系统用户会比较陌生,其实Hosts是一个没有扩展名的系统文件,可以用记事本等工具打开,其作用就是将一些常用的网址域名与其对应的IP地址建立一个关联“数据库”,所以功 ...

  8. TOYS(叉积)

    TOYS http://poj.org/problem?id=2318 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 193 ...

  9. swift - 代码创建 pickerView 显示或隐藏横线

    import UIKit class VC1: UIViewController { fileprivate lazy var pickerV : UIPickerView = { let v = U ...

  10. yii2中的rules 自定义验证规则详解

    yii2的一个强大之处之一就是他的Form组件,既方便又安全.有些小伙伴感觉用yii一段时间了,好嘛,除了比tp"难懂"好像啥都没有. 领导安排搞一个注册的功能,这家伙刷刷刷的又是 ...