题意:给出 n 个点 m 条有向边,要求选出一个环,使得这上面 点权和/边权和 最大。

析:同样转成是01分数规划的形式,F / L 要这个值最大,也就是 G(r) = F - L * r 这个值为0时,r 的值,然后对于 F > 0,很明显是 r 太小,但是不好判断,把这个值取反,这样的话就能用Bellan-Ford 来判是不是有负环了,也可以用spfa。

代码如下:

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
#include <cctype>
#include <cmath>
#include <stack>
#include <sstream>
#include <list>
#include <assert.h>
#include <bitset>
#include <numeric>
#define debug() puts("++++")
#define gcd(a, b) __gcd(a, b)
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define fi first
#define se second
#define pb push_back
#define sqr(x) ((x)*(x))
#define ms(a,b) memset(a, b, sizeof a)
#define sz size()
#define pu push_up
#define pd push_down
#define cl clear()
#define all 1,n,1
#define FOR(i,x,n) for(int i = (x); i < (n); ++i)
#define freopenr freopen("in.txt", "r", stdin)
#define freopenw freopen("out.txt", "w", stdout)
using namespace std; typedef long long LL;
typedef unsigned long long ULL;
typedef pair<LL, int> P;
const int INF = 0x3f3f3f3f;
const LL LNF = 1e17;
const double inf = 1e20;
const double PI = acos(-1.0);
const double eps = 1e-3;
const int maxn = 1e3 + 10;
const int maxm = 1e6 + 5;
const int mod = 1000000007;
const int dr[] = {-1, 0, 1, 0};
const int dc[] = {0, -1, 0, 1};
const char *de[] = {"0000", "0001", "0010", "0011", "0100", "0101", "0110", "0111", "1000", "1001", "1010", "1011", "1100", "1101", "1110", "1111"};
int n, m;
const int mon[] = {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
const int monn[] = {0, 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
inline bool is_in(int r, int c) {
return r >= 0 && r < n && c >= 0 && c < m;
} struct Edge{
int to, val, next;
};
Edge edges[maxn*5];
int head[maxn], cnt; void addEdge(int u, int v, int c){
edges[cnt].to = v;
edges[cnt].val = c;
edges[cnt].next = head[u];
head[u] = cnt++;
}
int val[maxn];
bool inq[maxn];
int num[maxn];
double d[maxn]; bool judge(double m){
queue<int> q; q.push(1);
ms(inq, 0); ms(num, 0);
for(int i = 0; i <= n; ++i) d[i] = inf;
d[1] = 0; inq[1] = true; while(!q.empty()){
int u = q.front(); q.pop();
inq[u] = 0;
for(int i = head[u]; ~i; i = edges[i].next){
int v = edges[i].to;
if(d[v] > -val[v] + edges[i].val * m + d[u]){
d[v] = -val[v] + edges[i].val * m + d[u];
if(!inq[v]){ inq[v] = 1; q.push(v); if(++num[v] > n) return true; }
}
}
}
return false;
} int main(){
while(scanf("%d %d", &n, &m) == 2){
for(int i = 1; i <= n; ++i) scanf("%d", val + i);
ms(head, -1); cnt = 0;
while(m--){
int u, v, c;
scanf("%d %d %d", &u, &v, &c);
addEdge(u, v, c);
}
double l = 0.0, r = 1e3;
while(r - l > eps){
double m = (l + r) / 2.0;
judge(m) ? l = m : r = m;
}
printf("%.2f\n", l);
}
return 0;
}

  

POJ 3621 Sightseeing Cows (bellman-Ford + 01分数规划)的更多相关文章

  1. POJ 3621 Sightseeing Cows 【01分数规划+spfa判正环】

    题目链接:http://poj.org/problem?id=3621 Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total ...

  2. POJ 3621 Sightseeing Cows(最优比例环+SPFA检测)

    Sightseeing Cows Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 10306   Accepted: 3519 ...

  3. [POJ 3621] Sightseeing Cows

    [题目链接] http://poj.org/problem?id=3621 [算法] 01分数规划(最优比率环) [代码] #include <algorithm> #include &l ...

  4. Desert King (poj 2728 最优比率生成树 0-1分数规划)

    Language: Default Desert King Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 22113   A ...

  5. POJ 3621 Sightseeing Cows (最优比率环 01分数划分)

    题意: 给定L个点, P条边的有向图, 每个点有一个价值, 但只在第一经过获得, 每条边有一个花费, 每次经过都要付出这个花费, 在图中找出一个环, 使得价值之和/花费之和 最大 分析: 这道题其实并 ...

  6. POJ 3621 Sightseeing Cows | 01分数规划

    题目: http://poj.org/problem?id=3621 题解: 二分答案,检查有没有负环 #include<cstdio> #include<algorithm> ...

  7. POJ 3621 Sightseeing Cows 01分数规划,最优比例环的问题

    http://www.cnblogs.com/wally/p/3228171.html 题解请戳上面 然后对于01规划的总结 1:对于一个表,求最优比例 这种就是每个点位有benefit和cost,这 ...

  8. POJ 3621 Sightseeing Cows [最优比率环]

    感觉去年9月的自己好$naive$ http://www.cnblogs.com/candy99/p/5868948.html 现在不也是嘛 裸题,具体看学习笔记 二分答案之后判负环就行了 $dfs$ ...

  9. 洛谷P2868 [USACO07DEC]观光奶牛Sightseeing Cows(01分数规划)

    题意 题目链接 Sol 复习一下01分数规划 设\(a_i\)为点权,\(b_i\)为边权,我们要最大化\(\sum \frac{a_i}{b_i}\).可以二分一个答案\(k\),我们需要检查\(\ ...

随机推荐

  1. Mysql 表名大写 找不到表

    原来Linux下的MySQL默认是区分表名大小写的,通过如下设置,可以让MySQL不区分表名大小写:1.用root登录,修改 /etc/my.cnf:2.在[mysqld]节点下,加入一行: lowe ...

  2. Spring boot Thymeleaf 配置

    第一步:pom.xml加入依赖 <!-- HTML templates--> <dependency> <groupId>org.springframework.b ...

  3. as3 优化

    1 代码写法 1 定义局部变量 定义局部变量的时候,一定要用关键字var来定义,因为在Flash播放器中,局部变量的运行速度更快,而且在他们的作用域外是不耗占系统资源的.当一个函数调用结束的时候,相应 ...

  4. as3 关闭加载流

    /** Loader 取消加载**/ function closeQueueLoader():void { if (cur_loader && cur_loader.contentLo ...

  5. 【干货】国外程序员整理的 C++ 资源大全(转)

    转zi:http://www.csdn.net/article/2014-10-24/2822269-c++ 关于 C++ 框架.库和资源的一些汇总列表,由 fffaraz发起和维护. 内容包括:标准 ...

  6. sql查询job

    use msdb go --if object_id('tempdb..#SqlAgentJob') is not null -- drop table #SqlAgentJob --go decla ...

  7. 解决:Invalid character found in method name. HTTP method names must be tokens

      阿里云上弄了一个tomcat,经常半夜发送崩溃,查看日志发现这个东西,查阅资料发现是Tomcat的header缓冲区大小不够,只需要在server.xml中增加maxHttpHeaderSize字 ...

  8. IE低版本浏览器兼容问题

    head标签中填写如下代码 <meta name="renderer" content="webkit"/> <meta name=" ...

  9. 命名空间出错 namespace Web.Skin.@default

    namespace Web.Skin.default会报错 因为default是关键字/保留字,所以需要在前面加@符号; namespace Web.Skin.@default

  10. Python3 input() 函数

    Python3 input() 函数  Python3 内置函数 Python3.x 中 input() 函数接受一个标准输入数据,返回为 string 类型. 注意:在 Python3.x 中 ra ...