解析
 
from datetime import *
import time
import calendar
import json
import numpy as np
from struct import *
import binascii
import netCDF4 file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
data = file.read();
print(len(data))
file.close()
#
file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
length = 0 zonName,dataName,flag,version, = unpack("12s38s8s8s", file.read(12+38+8+8))
zonName = zonName.decode("gbk").rstrip('\x00')
dataName = dataName.decode("gbk").rstrip('\x00')
flag = flag.decode("gbk").rstrip('\x00')
version = version.decode("gbk").rstrip('\x00')
length = length + 12+38+8+8
#
print(zonName)
print("数据说明: " + dataName)
print("文件标志: " + flag)
print("数据版本号: " + version) #
year,month,day,hour,minute,interval, = unpack("HHHHHH", file.read(2+2+2+2+2+2))
print("时间: "+str(year)+"-"+str(month)+"-"+str(day)+" "+str(hour)+":"+str(minute))
print("时段长: "+str(interval))
length = length + 2+2+2+2+2+2 #
XNumGrids,YNumGrids,ZNumGrids, = unpack("HHH", file.read(2+2+2))
print("X: " + str(XNumGrids)+" Y: "+str(YNumGrids)+" Z:"+str(ZNumGrids))
length = length + 2+2+2 #
RadarCount, = unpack("i", file.read(4))
print("拼图雷达数: " + str(RadarCount))
length = length + 4 #
StartLon,StartLat,CenterLon,CenterLat,XReso,YReso, = unpack("ffffff", file.read(4+4+4+4+4+4))
print("开始经度: "+str(StartLon)+" 开始纬度:"+str(StartLat)+" 中心经度:"+str(CenterLon)+" 中心纬度:"+str(CenterLat))
print("经度方向分辨率:"+str(XReso)+" 纬度方向分辨率:"+str(YReso))
length = length + 4+4+4+4+4+4 ZhighGrids=[]
for i in range(0, 40):
ZhighGrid, = unpack("f", file.read(4))
ZhighGrids.append(ZhighGrid)
print("垂直方向的高度:"+str(ZhighGrids))
length = length + 40*4 #
RadarStationNames=[]
for i in range(0, 20):
RadarStationName, = unpack("16s", file.read(16))
RadarStationName = RadarStationName.decode("gbk")
RadarStationNames.append(RadarStationName.rstrip('\x00'))
print("相关站点名称:"+str(RadarStationNames))
length = length + 20*16 #
RadarLongitudes=[]
for i in range(0, 20):
RadarLongitude, = unpack("f", file.read(4))
RadarLongitudes.append(RadarLongitude)
print("相关站点所在经度:"+str(RadarLongitudes))
length = length + 20*4 #
RadarLatitudes=[]
for i in range(0, 20):
RadarLatitude, = unpack("f", file.read(4))
RadarLatitudes.append(RadarLatitude)
print("相关站点所在纬度:"+str(RadarLatitudes))
length = length + 20*4 #
RadarAltitudes=[]
for i in range(0, 20):
RadarAltitude, = unpack("f", file.read(4))
RadarAltitudes.append(RadarAltitude)
print("相关站点所在海拔高度:"+str(RadarAltitudes))
length = length + 20*4 #
MosaicFlags=[]
for i in range(0, 20):
MosaicFlag, = unpack("B", file.read(1))
MosaicFlags.append(MosaicFlag)
print("该相关站点数据是否包含在本次拼图中:"+str(MosaicFlags))
length = length + 20*1 #
m_iDataType, = unpack("h", file.read(2))
print("数据类型定义:"+str(m_iDataType))
if m_iDataType==0:
print("unsigned char")
elif m_iDataType==1:
print("char")
elif m_iDataType==2:
print("unsigned short")
elif m_iDataType==3:
print("short")
elif m_iDataType==4:
print("unsigned short")
length = length + 2 #
m_iLevelDimension, = unpack("h", file.read(2))
print("每一层的向量数:"+str(m_iLevelDimension))
length = length + 2 #
Reserveds=[]
Reserveds, = unpack("168s", file.read(168))
Reserveds = Reserveds.decode("gbk").rstrip('\x00')
print("该相关站点数据是否包含在本次拼图中: "+Reserveds)
length = length + 168 #打印数据
valueZYX = []
for i in range(0, ZNumGrids):
valueYX = []
for j in range(0, YNumGrids):
valueX = []
for k in range(0, XNumGrids):
value, = unpack("h", file.read(2))
#value, = unpack("b", file.read(1))
'''
if value > 0:
print(value)
'''
valueX.append(value)
valueYX.append(valueX)
valueZYX.append(valueYX)
#
#print("数据:"+str(valueZYX))
length = length + ZNumGrids*YNumGrids*XNumGrids*2
print(length)
#
print("----------------------------数据----------------------------") file.close()
生成ASCII
import time
from struct import * start = time.clock()
file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
#
zonName,dataName,flag,version, = unpack("12s38s8s8s", file.read(12+38+8+8))
zonName = zonName.decode("gbk").rstrip('\x00')
dataName = dataName.decode("gbk").rstrip('\x00')
flag = flag.decode("gbk").rstrip('\x00')
version = version.decode("gbk").rstrip('\x00') #
print(zonName)
print("数据说明: " + dataName)
print("文件标志: " + flag)
print("数据版本号: " + version)
#
length = 0
length = length + 2+2+2+2+2+2 # 时间说明
file.read(length) XNumGrids,YNumGrids,ZNumGrids, = unpack("HHH", file.read(2+2+2))
print("X: " + str(XNumGrids)+" Y: "+str(YNumGrids)+" Z:"+str(ZNumGrids)) length = 0
length = length + 4 # 拼图雷达数
file.read(length)
#
StartLon,StartLat,CenterLon,CenterLat,XReso,YReso, = unpack("ffffff", file.read(4+4+4+4+4+4))
print("开始经度: "+str(StartLon)+" 开始纬度:"+str(StartLat)+" 中心经度:"+str(CenterLon)+" 中心纬度:"+str(CenterLat))
print("经度方向分辨率:"+str(XReso)+" 纬度方向分辨率:"+str(YReso)) ZhighGrids=[]
for i in range(0, 40):
ZhighGrid, = unpack("f", file.read(4))
ZhighGrids.append(ZhighGrid)
print(" 垂直方向的高度:"+str(ZhighGrids)) #
length = 0
length = length + 20*16 # 相关站点名称
length = length + 20*4 # 相关站点所在经度
length = length + 20*4 # 相关站点所在纬度
length = length + 20*4 # 相关站点所在海拔高度
length = length + 20*1 # 该相关站点数据是否包含在本次拼图中
length = length + 2 # 数据类型定义
length = length + 2 # 每一层的向量数
length = length + 168 # 保留信息
file.read(length) textZYX = []
for i in range(0, ZNumGrids):
textYX = []
for j in range(0, YNumGrids):
textX = []
for k in range(0, XNumGrids):
value, = unpack("h", file.read(2))
textX.append(str(value))
textYX.append(' '.join(textX))
textZYX.append('\n'.join(textYX))
file.close() #
#------------------------------------------------------------------------------- file_object = open('ASCIIData.txt', 'w')
file_object.write("NCOLS " + str(XNumGrids) + "\n")
file_object.write("NROWS " + str(YNumGrids) + "\n")
file_object.write("XLLCENTER " + str(StartLon) + "\n")
file_object.write("YLLCENTER " + str(StartLat - YReso * (YNumGrids - 1)) + "\n") # round(YReso, 3) *
file_object.write("CELLSIZE " + str(XReso) + "\n")
file_object.write("NODATA_VALUE " + str(-9999) + "\n")
#
#
file_object.writelines(textZYX[0])
file_object.close()
end = time.clock()
print("read: %f s" % dateSpanTransfer)
dateSpanTransfer = end - start #-------------------------------------------------------------------------------
生成Image(.img)
import time
from struct import *
from osgeo import gdal, osr
from osgeo.gdalconst import *
import numpy start = time.clock()
file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
#
zonName,dataName,flag,version, = unpack("12s38s8s8s", file.read(12+38+8+8))
zonName = zonName.decode("gbk").rstrip('\x00')
dataName = dataName.decode("gbk").rstrip('\x00')
flag = flag.decode("gbk").rstrip('\x00')
version = version.decode("gbk").rstrip('\x00') #
print(zonName)
print("数据说明: " + dataName)
print("文件标志: " + flag)
print("数据版本号: " + version)
#
length = 0
length = length + 2+2+2+2+2+2 # 时间说明
file.read(length) XNumGrids,YNumGrids,ZNumGrids, = unpack("HHH", file.read(2+2+2))
print("X: " + str(XNumGrids)+" Y: "+str(YNumGrids)+" Z:"+str(ZNumGrids)) length = 0
length = length + 4 # 拼图雷达数
file.read(length)
#
StartLon,StartLat,CenterLon,CenterLat,XReso,YReso, = unpack("ffffff", file.read(4+4+4+4+4+4))
print("开始经度: "+str(StartLon)+" 开始纬度:"+str(StartLat)+" 中心经度:"+str(CenterLon)+" 中心纬度:"+str(CenterLat))
print("经度方向分辨率:"+str(XReso)+" 纬度方向分辨率:"+str(YReso)) ZhighGrids=[]
for i in range(0, 40):
ZhighGrid, = unpack("f", file.read(4))
ZhighGrids.append(ZhighGrid)
print(" 垂直方向的高度:"+str(ZhighGrids)) #
length = 0
length = length + 20*16 # 相关站点名称
length = length + 20*4 # 相关站点所在经度
length = length + 20*4 # 相关站点所在纬度
length = length + 20*4 # 相关站点所在海拔高度
length = length + 20*1 # 该相关站点数据是否包含在本次拼图中
length = length + 2 # 数据类型定义
length = length + 2 # 每一层的向量数
length = length + 168 # 保留信息
file.read(length) valueZYX = []
for i in range(0, ZNumGrids):
valueYX = []
for j in range(0, YNumGrids):
valueX = []
for k in range(0, XNumGrids):
value, = unpack("h", file.read(2))
valueX.append(value)
valueYX.append(valueX)
valueZYX.append(valueYX)
file.close()
#
#
#------------------------------------------------------------------------------- end = time.clock()
dateSpanTransfer = end - start
print("read: %f s" % dateSpanTransfer)
#
#
driver = gdal.GetDriverByName('HFA')
driver.Register()
dataSetImg = driver.Create( "D:/radarDataTest/edarsImage.img", XNumGrids, YNumGrids, 1, gdal.GDT_Float32 )
#
dataSetImg.SetGeoTransform( [ StartLon, XReso, 0, StartLat, 0, -YReso ] )
#
srs = osr.SpatialReference()
srs.SetWellKnownGeogCS( 'WGS84' )
dataSetImg.SetProjection( srs.ExportToWkt() )
#
value2D = numpy.matrix( valueYX, dtype=numpy.float32 )
dataSetImg.GetRasterBand(1).WriteArray( value2D )
#
dataSetImg = None #datasource.Destroy()
#-------------------------------------------------------------------------------
生成netCDF
from datetime import *
import time
import calendar
import json
import numpy as np
from struct import *
import binascii
import numpy
from numpy.random import uniform
from netCDF4 import Dataset start = time.clock()
file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
#
zonName,dataName,flag,version, = unpack("12s38s8s8s", file.read(12+38+8+8))
zonName = zonName.decode("gbk").rstrip('\x00')
dataName = dataName.decode("gbk").rstrip('\x00')
flag = flag.decode("gbk").rstrip('\x00')
version = version.decode("gbk").rstrip('\x00') #
print(zonName)
print("数据说明: " + dataName)
print("文件标志: " + flag)
print("数据版本号: " + version)
#
length = 0
length = length + 2+2+2+2+2+2 # 时间说明
file.read(length) XNumGrids,YNumGrids,ZNumGrids, = unpack("HHH", file.read(2+2+2))
print("X: " + str(XNumGrids)+" Y: "+str(YNumGrids)+" Z:"+str(ZNumGrids)) length = 0
length = length + 4 # 拼图雷达数
file.read(length)
#
StartLon,StartLat,CenterLon,CenterLat,XReso,YReso, = unpack("ffffff", file.read(4+4+4+4+4+4))
print("开始经度: "+str(StartLon)+" 开始纬度:"+str(StartLat)+" 中心经度:"+str(CenterLon)+" 中心纬度:"+str(CenterLat))
print(" 经度方向分辨率:"+str(XReso)+" 纬度方向分辨率:"+str(YReso)) ZhighGrids=[]
for i in range(0, 40):
ZhighGrid, = unpack("f", file.read(4))
ZhighGrids.append(ZhighGrid)
print(" 垂直方向的高度:"+str(ZhighGrids)) #
length = 0
length = length + 20*16 # 相关站点名称
length = length + 20*4 # 相关站点所在经度
length = length + 20*4 # 相关站点所在纬度
length = length + 20*4 # 相关站点所在海拔高度
length = length + 20*1 # 该相关站点数据是否包含在本次拼图中
length = length + 2 # 数据类型定义
length = length + 2 # 每一层的向量数
length = length + 168 # 保留信息
file.read(length) valueZYX = []
for i in range(0, ZNumGrids):
valueYX = []
for j in range(0, YNumGrids):
valueX = []
for k in range(0, XNumGrids):
#value, = unpack("h", file.read(2))
#textX.append(str(value/10.0))
value, = unpack("b", file.read(1))
textX.append(str(value*2+66.0))
valueYX.append(valueX)
valueZYX.append(valueYX)
file.close()
#
valueXYZ = []
for k in range(0, XNumGrids):
for j in range(0, YNumGrids):
for i in range(0, ZNumGrids):
valueXYZ.append(valueZYX[i][j][k]) #
file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
rootgrp = Dataset("test.nc", "w", format="NETCDF4")
#rootgrp = Dataset("test.nc", "a")
#fcstgrp = rootgrp.createGroup("forecasts") lon = rootgrp.createDimension("lon", XNumGrids)
lat = rootgrp.createDimension("lat", YNumGrids)
alt = rootgrp.createDimension("alt", ZNumGrids) lon = rootgrp.createVariable("lon", "f8", ("lon",))
lat = rootgrp.createVariable("lat", "f8", ("lat",))
alt = rootgrp.createVariable("alt", "f8", ("alt",)) #val = rootgrp.createVariable("val","f4",("zz","yy","xx",))
val = rootgrp.createVariable("val","f4",("lon","lat","alt",)) #
rootgrp.description = dataName
rootgrp.history = "创建时间: " + time.strftime('%Y-%m-%d %X', time.localtime())
rootgrp.Source_Software = "SmartMap"
#
lon.units = "degrees_east"
lon.long_name = "longitude coordinate"
lon.standard_name = "longitude"
#
lat.units = "degrees_north"
lat.long_name = "latitude coordinate"
lat.standard_name = "latitude"
#
alt.units = "m"
alt.long_name = "altitude"
alt.standard_name = "heigh"
#
val.long_name = "value"
val.esri_pe_string = 'GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]]'
val.coordinates = "lon lat alt"
val.units = "Degree"
val.missing_value = -9999 #interval = 0.009999999776482582
interval = 0.01
#x = numpy.arange(-90,91,2.5) x = []
for i in range(0, XNumGrids):
x.append(StartLon + i * round(XReso, 3))
#x = numpy.array(x)
lon[:] = x #
#y = numpy.arange(-180,180,2.5)
y = []
for i in range(0, YNumGrids):
y.append(StartLat - i * round(YReso, 3))
#y = numpy.array(y)
lat[:] = y
# z = []
for i in range(0, ZNumGrids):
z.append(ZhighGrids[i])
#z = numpy.array(z)
alt[:] = z
# #kk = uniform(size=(2,3,4,5))
#print(kk) #val[::]=valueZYX
val[::] = valueXYZ #
rootgrp.close()

Python解析SWAN气象雷达数据--(解析、生成ASCII、Image、netCDF)的更多相关文章

  1. python爬虫的页面数据解析和提取/xpath/bs4/jsonpath/正则(1)

    一.数据类型及解析方式 一般来讲对我们而言,需要抓取的是某个网站或者某个应用的内容,提取有用的价值.内容一般分为两部分,非结构化的数据 和 结构化的数据. 非结构化数据:先有数据,再有结构, 结构化数 ...

  2. python爬虫---爬虫的数据解析的流程和解析数据的几种方式

    python爬虫---爬虫的数据解析的流程和解析数据的几种方式 一丶爬虫数据解析 概念:将一整张页面中的局部数据进行提取/解析 作用:用来实现聚焦爬虫的吧 实现方式: 正则 (针对字符串) bs4 x ...

  3. 数据解析_bs进行数据解析

    1.bs4进行数据解析 数据解析的原理 1.标签定位 2.提取标签,标签属性中存储的数据值 bs4数据解析的原理 1.实例化一个BeautifulSoup对象,并且将页面源码数据加载到该对象中 2.通 ...

  4. Python爬虫之三种数据解析方式

    一.引入 二.回顾requests实现数据爬取的流程 指定url 基于requests模块发起请求 获取响应对象中的数据 进行持久化存储 其实,在上述流程中还需要较为重要的一步,就是在持久化存储之前需 ...

  5. 05 Python网络爬虫的数据解析方式

    一.爬虫数据解析的流程 1.指定url 2.基于requests模块发起请求 3.获取响应中的数据 4.数据解析 5.进行持久化存储 二.解析方法 (1)正则解析 (2)bs4解析 (3)xpath解 ...

  6. Unity3d-XML文件数据解析&JSON数据解析

    1.XML文件数据解析:(首先须要导入XMLParser解析器,The latest released download from:http://dev.grumpyferret.com/unity/ ...

  7. python爬虫的页面数据解析和提取/xpath/bs4/jsonpath/正则(2)

    上半部分内容链接 : https://www.cnblogs.com/lowmanisbusy/p/9069330.html 四.json和jsonpath的使用 JSON(JavaScript Ob ...

  8. 如何使用fastJson来解析JSON格式数据和生成JSON格式数据

    由于项目用到了JSON格式的数据,在网上搜索到了阿里的fastjson比较好用,特此记录fastjson用法,以备以后查询之用. decode: 首先创建一个JSON解析类: public class ...

  9. python+jinja2实现接口数据批量生成工具

    在做接口测试的时候,我们经常会遇到一种情况就是要对接口的参数进行各种可能的校验,手动修改很麻烦,尤其是那些接口参数有几十个甚至更多的,有没有一种方法可以批量的对指定参数做生成处理呢. 答案是肯定的! ...

随机推荐

  1. leetcode-917-仅仅反转字母

    题目描述: 给定一个字符串 S,返回 “反转后的” 字符串,其中不是字母的字符都保留在原地,而所有字母的位置发生反转. 示例 1: 输入:"ab-cd" 输出:"dc-b ...

  2. 【BZOJ3992】【SDOI2015】序列统计 EGF+多项式快速幂+循环卷积

    如果是求$n$个数之和在模$m$意义下为$x$,那么做法是显然的. 但是这道题问的是$n$个数之积在模m意义下为$x$,那么做法就和上面的问题不同. 考虑如何把乘法转换成加法(求log): 题目中有一 ...

  3. easyUI slider滑块,在加载出来后,easyUI slider滑块禁用方法

    easyUI slider滑块禁用 如下图easyUI slider滑块,在加载出来后,需要禁止拉动 easyUI slider滑块禁用方法 //禁用$(s1).slider({ disabled:t ...

  4. R程序包

    === 数据基础操作 ===reshape2 横向.纵向做数据变换,例如把纵向堆叠在数据库中的证券行情数据转换成一个按照不同证券代码横向排列,按照时间纵向排列收盘价的数据表stringr 方便地用正则 ...

  5. Filter应用之2-设置某些页面缓存或是不缓存

    要想让所有浏览器不缓存页面,需要在每个jsp上加上: <% response.setHeader("expires","-1"); response.se ...

  6. oauth2.0实现sso单点登录的方式和相关代码

    SSO介绍 什么是SSO 百科:SSO英文全称Single Sign On,单点登录.SSO是在多个应用系统中,用户只需要登录一次就可以访问所有相互信任的应用系统.它包括可以将这次主要的登录映射到其他 ...

  7. 按照Right-BICEP要求对实验二进行测试

    我的代码实现的功能很简单,在最基本的功能上,包括有无括号(0/1),有无负数(0/1),有无乘除法(0/1)验证程序的正确性,测试用例为8个,2^3个,也就覆盖了所有的代码路径. 测试计划: 基本功能 ...

  8. 一分钟让你学会使用Android AsyncTask

    AsyncTask相信大多数朋友对它的用法都已经非常熟悉,这里记录一下主要是献给那些刚刚接触的Android 或者AsyncTask的同学们,高手请绕道. AsyncTask类是Android1.5版 ...

  9. Ubuntukylin-14.04-desktop( 不带分区)安装步骤详解

    不多说,直接上干货! Ubuntukylin-14.04-desktop(带分区)安装步骤详解 Ubuntu14.04安装之后的一些配置 Ubuntukylin-14.04-desktop( 不带分区 ...

  10. elasticsearch 导入基础数据并索引之 geo_shape

    我们看到的图形, 实际是由点来完成的, 有2种类型的格子模型可用于地理星座, 默认使用的是geoHash, 还有一种4叉树(quad trees), 也可用于 判断形状与索引的形状关系 1), int ...