解析
 
from datetime import *
import time
import calendar
import json
import numpy as np
from struct import *
import binascii
import netCDF4 file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
data = file.read();
print(len(data))
file.close()
#
file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
length = 0 zonName,dataName,flag,version, = unpack("12s38s8s8s", file.read(12+38+8+8))
zonName = zonName.decode("gbk").rstrip('\x00')
dataName = dataName.decode("gbk").rstrip('\x00')
flag = flag.decode("gbk").rstrip('\x00')
version = version.decode("gbk").rstrip('\x00')
length = length + 12+38+8+8
#
print(zonName)
print("数据说明: " + dataName)
print("文件标志: " + flag)
print("数据版本号: " + version) #
year,month,day,hour,minute,interval, = unpack("HHHHHH", file.read(2+2+2+2+2+2))
print("时间: "+str(year)+"-"+str(month)+"-"+str(day)+" "+str(hour)+":"+str(minute))
print("时段长: "+str(interval))
length = length + 2+2+2+2+2+2 #
XNumGrids,YNumGrids,ZNumGrids, = unpack("HHH", file.read(2+2+2))
print("X: " + str(XNumGrids)+" Y: "+str(YNumGrids)+" Z:"+str(ZNumGrids))
length = length + 2+2+2 #
RadarCount, = unpack("i", file.read(4))
print("拼图雷达数: " + str(RadarCount))
length = length + 4 #
StartLon,StartLat,CenterLon,CenterLat,XReso,YReso, = unpack("ffffff", file.read(4+4+4+4+4+4))
print("开始经度: "+str(StartLon)+" 开始纬度:"+str(StartLat)+" 中心经度:"+str(CenterLon)+" 中心纬度:"+str(CenterLat))
print("经度方向分辨率:"+str(XReso)+" 纬度方向分辨率:"+str(YReso))
length = length + 4+4+4+4+4+4 ZhighGrids=[]
for i in range(0, 40):
ZhighGrid, = unpack("f", file.read(4))
ZhighGrids.append(ZhighGrid)
print("垂直方向的高度:"+str(ZhighGrids))
length = length + 40*4 #
RadarStationNames=[]
for i in range(0, 20):
RadarStationName, = unpack("16s", file.read(16))
RadarStationName = RadarStationName.decode("gbk")
RadarStationNames.append(RadarStationName.rstrip('\x00'))
print("相关站点名称:"+str(RadarStationNames))
length = length + 20*16 #
RadarLongitudes=[]
for i in range(0, 20):
RadarLongitude, = unpack("f", file.read(4))
RadarLongitudes.append(RadarLongitude)
print("相关站点所在经度:"+str(RadarLongitudes))
length = length + 20*4 #
RadarLatitudes=[]
for i in range(0, 20):
RadarLatitude, = unpack("f", file.read(4))
RadarLatitudes.append(RadarLatitude)
print("相关站点所在纬度:"+str(RadarLatitudes))
length = length + 20*4 #
RadarAltitudes=[]
for i in range(0, 20):
RadarAltitude, = unpack("f", file.read(4))
RadarAltitudes.append(RadarAltitude)
print("相关站点所在海拔高度:"+str(RadarAltitudes))
length = length + 20*4 #
MosaicFlags=[]
for i in range(0, 20):
MosaicFlag, = unpack("B", file.read(1))
MosaicFlags.append(MosaicFlag)
print("该相关站点数据是否包含在本次拼图中:"+str(MosaicFlags))
length = length + 20*1 #
m_iDataType, = unpack("h", file.read(2))
print("数据类型定义:"+str(m_iDataType))
if m_iDataType==0:
print("unsigned char")
elif m_iDataType==1:
print("char")
elif m_iDataType==2:
print("unsigned short")
elif m_iDataType==3:
print("short")
elif m_iDataType==4:
print("unsigned short")
length = length + 2 #
m_iLevelDimension, = unpack("h", file.read(2))
print("每一层的向量数:"+str(m_iLevelDimension))
length = length + 2 #
Reserveds=[]
Reserveds, = unpack("168s", file.read(168))
Reserveds = Reserveds.decode("gbk").rstrip('\x00')
print("该相关站点数据是否包含在本次拼图中: "+Reserveds)
length = length + 168 #打印数据
valueZYX = []
for i in range(0, ZNumGrids):
valueYX = []
for j in range(0, YNumGrids):
valueX = []
for k in range(0, XNumGrids):
value, = unpack("h", file.read(2))
#value, = unpack("b", file.read(1))
'''
if value > 0:
print(value)
'''
valueX.append(value)
valueYX.append(valueX)
valueZYX.append(valueYX)
#
#print("数据:"+str(valueZYX))
length = length + ZNumGrids*YNumGrids*XNumGrids*2
print(length)
#
print("----------------------------数据----------------------------") file.close()
生成ASCII
import time
from struct import * start = time.clock()
file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
#
zonName,dataName,flag,version, = unpack("12s38s8s8s", file.read(12+38+8+8))
zonName = zonName.decode("gbk").rstrip('\x00')
dataName = dataName.decode("gbk").rstrip('\x00')
flag = flag.decode("gbk").rstrip('\x00')
version = version.decode("gbk").rstrip('\x00') #
print(zonName)
print("数据说明: " + dataName)
print("文件标志: " + flag)
print("数据版本号: " + version)
#
length = 0
length = length + 2+2+2+2+2+2 # 时间说明
file.read(length) XNumGrids,YNumGrids,ZNumGrids, = unpack("HHH", file.read(2+2+2))
print("X: " + str(XNumGrids)+" Y: "+str(YNumGrids)+" Z:"+str(ZNumGrids)) length = 0
length = length + 4 # 拼图雷达数
file.read(length)
#
StartLon,StartLat,CenterLon,CenterLat,XReso,YReso, = unpack("ffffff", file.read(4+4+4+4+4+4))
print("开始经度: "+str(StartLon)+" 开始纬度:"+str(StartLat)+" 中心经度:"+str(CenterLon)+" 中心纬度:"+str(CenterLat))
print("经度方向分辨率:"+str(XReso)+" 纬度方向分辨率:"+str(YReso)) ZhighGrids=[]
for i in range(0, 40):
ZhighGrid, = unpack("f", file.read(4))
ZhighGrids.append(ZhighGrid)
print(" 垂直方向的高度:"+str(ZhighGrids)) #
length = 0
length = length + 20*16 # 相关站点名称
length = length + 20*4 # 相关站点所在经度
length = length + 20*4 # 相关站点所在纬度
length = length + 20*4 # 相关站点所在海拔高度
length = length + 20*1 # 该相关站点数据是否包含在本次拼图中
length = length + 2 # 数据类型定义
length = length + 2 # 每一层的向量数
length = length + 168 # 保留信息
file.read(length) textZYX = []
for i in range(0, ZNumGrids):
textYX = []
for j in range(0, YNumGrids):
textX = []
for k in range(0, XNumGrids):
value, = unpack("h", file.read(2))
textX.append(str(value))
textYX.append(' '.join(textX))
textZYX.append('\n'.join(textYX))
file.close() #
#------------------------------------------------------------------------------- file_object = open('ASCIIData.txt', 'w')
file_object.write("NCOLS " + str(XNumGrids) + "\n")
file_object.write("NROWS " + str(YNumGrids) + "\n")
file_object.write("XLLCENTER " + str(StartLon) + "\n")
file_object.write("YLLCENTER " + str(StartLat - YReso * (YNumGrids - 1)) + "\n") # round(YReso, 3) *
file_object.write("CELLSIZE " + str(XReso) + "\n")
file_object.write("NODATA_VALUE " + str(-9999) + "\n")
#
#
file_object.writelines(textZYX[0])
file_object.close()
end = time.clock()
print("read: %f s" % dateSpanTransfer)
dateSpanTransfer = end - start #-------------------------------------------------------------------------------
生成Image(.img)
import time
from struct import *
from osgeo import gdal, osr
from osgeo.gdalconst import *
import numpy start = time.clock()
file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
#
zonName,dataName,flag,version, = unpack("12s38s8s8s", file.read(12+38+8+8))
zonName = zonName.decode("gbk").rstrip('\x00')
dataName = dataName.decode("gbk").rstrip('\x00')
flag = flag.decode("gbk").rstrip('\x00')
version = version.decode("gbk").rstrip('\x00') #
print(zonName)
print("数据说明: " + dataName)
print("文件标志: " + flag)
print("数据版本号: " + version)
#
length = 0
length = length + 2+2+2+2+2+2 # 时间说明
file.read(length) XNumGrids,YNumGrids,ZNumGrids, = unpack("HHH", file.read(2+2+2))
print("X: " + str(XNumGrids)+" Y: "+str(YNumGrids)+" Z:"+str(ZNumGrids)) length = 0
length = length + 4 # 拼图雷达数
file.read(length)
#
StartLon,StartLat,CenterLon,CenterLat,XReso,YReso, = unpack("ffffff", file.read(4+4+4+4+4+4))
print("开始经度: "+str(StartLon)+" 开始纬度:"+str(StartLat)+" 中心经度:"+str(CenterLon)+" 中心纬度:"+str(CenterLat))
print("经度方向分辨率:"+str(XReso)+" 纬度方向分辨率:"+str(YReso)) ZhighGrids=[]
for i in range(0, 40):
ZhighGrid, = unpack("f", file.read(4))
ZhighGrids.append(ZhighGrid)
print(" 垂直方向的高度:"+str(ZhighGrids)) #
length = 0
length = length + 20*16 # 相关站点名称
length = length + 20*4 # 相关站点所在经度
length = length + 20*4 # 相关站点所在纬度
length = length + 20*4 # 相关站点所在海拔高度
length = length + 20*1 # 该相关站点数据是否包含在本次拼图中
length = length + 2 # 数据类型定义
length = length + 2 # 每一层的向量数
length = length + 168 # 保留信息
file.read(length) valueZYX = []
for i in range(0, ZNumGrids):
valueYX = []
for j in range(0, YNumGrids):
valueX = []
for k in range(0, XNumGrids):
value, = unpack("h", file.read(2))
valueX.append(value)
valueYX.append(valueX)
valueZYX.append(valueYX)
file.close()
#
#
#------------------------------------------------------------------------------- end = time.clock()
dateSpanTransfer = end - start
print("read: %f s" % dateSpanTransfer)
#
#
driver = gdal.GetDriverByName('HFA')
driver.Register()
dataSetImg = driver.Create( "D:/radarDataTest/edarsImage.img", XNumGrids, YNumGrids, 1, gdal.GDT_Float32 )
#
dataSetImg.SetGeoTransform( [ StartLon, XReso, 0, StartLat, 0, -YReso ] )
#
srs = osr.SpatialReference()
srs.SetWellKnownGeogCS( 'WGS84' )
dataSetImg.SetProjection( srs.ExportToWkt() )
#
value2D = numpy.matrix( valueYX, dtype=numpy.float32 )
dataSetImg.GetRasterBand(1).WriteArray( value2D )
#
dataSetImg = None #datasource.Destroy()
#-------------------------------------------------------------------------------
生成netCDF
from datetime import *
import time
import calendar
import json
import numpy as np
from struct import *
import binascii
import numpy
from numpy.random import uniform
from netCDF4 import Dataset start = time.clock()
file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
#
zonName,dataName,flag,version, = unpack("12s38s8s8s", file.read(12+38+8+8))
zonName = zonName.decode("gbk").rstrip('\x00')
dataName = dataName.decode("gbk").rstrip('\x00')
flag = flag.decode("gbk").rstrip('\x00')
version = version.decode("gbk").rstrip('\x00') #
print(zonName)
print("数据说明: " + dataName)
print("文件标志: " + flag)
print("数据版本号: " + version)
#
length = 0
length = length + 2+2+2+2+2+2 # 时间说明
file.read(length) XNumGrids,YNumGrids,ZNumGrids, = unpack("HHH", file.read(2+2+2))
print("X: " + str(XNumGrids)+" Y: "+str(YNumGrids)+" Z:"+str(ZNumGrids)) length = 0
length = length + 4 # 拼图雷达数
file.read(length)
#
StartLon,StartLat,CenterLon,CenterLat,XReso,YReso, = unpack("ffffff", file.read(4+4+4+4+4+4))
print("开始经度: "+str(StartLon)+" 开始纬度:"+str(StartLat)+" 中心经度:"+str(CenterLon)+" 中心纬度:"+str(CenterLat))
print(" 经度方向分辨率:"+str(XReso)+" 纬度方向分辨率:"+str(YReso)) ZhighGrids=[]
for i in range(0, 40):
ZhighGrid, = unpack("f", file.read(4))
ZhighGrids.append(ZhighGrid)
print(" 垂直方向的高度:"+str(ZhighGrids)) #
length = 0
length = length + 20*16 # 相关站点名称
length = length + 20*4 # 相关站点所在经度
length = length + 20*4 # 相关站点所在纬度
length = length + 20*4 # 相关站点所在海拔高度
length = length + 20*1 # 该相关站点数据是否包含在本次拼图中
length = length + 2 # 数据类型定义
length = length + 2 # 每一层的向量数
length = length + 168 # 保留信息
file.read(length) valueZYX = []
for i in range(0, ZNumGrids):
valueYX = []
for j in range(0, YNumGrids):
valueX = []
for k in range(0, XNumGrids):
#value, = unpack("h", file.read(2))
#textX.append(str(value/10.0))
value, = unpack("b", file.read(1))
textX.append(str(value*2+66.0))
valueYX.append(valueX)
valueZYX.append(valueYX)
file.close()
#
valueXYZ = []
for k in range(0, XNumGrids):
for j in range(0, YNumGrids):
for i in range(0, ZNumGrids):
valueXYZ.append(valueZYX[i][j][k]) #
file = open(r"D:/radarDataTest/Z_QPF_20140831203600.F030.bin", "rb")
rootgrp = Dataset("test.nc", "w", format="NETCDF4")
#rootgrp = Dataset("test.nc", "a")
#fcstgrp = rootgrp.createGroup("forecasts") lon = rootgrp.createDimension("lon", XNumGrids)
lat = rootgrp.createDimension("lat", YNumGrids)
alt = rootgrp.createDimension("alt", ZNumGrids) lon = rootgrp.createVariable("lon", "f8", ("lon",))
lat = rootgrp.createVariable("lat", "f8", ("lat",))
alt = rootgrp.createVariable("alt", "f8", ("alt",)) #val = rootgrp.createVariable("val","f4",("zz","yy","xx",))
val = rootgrp.createVariable("val","f4",("lon","lat","alt",)) #
rootgrp.description = dataName
rootgrp.history = "创建时间: " + time.strftime('%Y-%m-%d %X', time.localtime())
rootgrp.Source_Software = "SmartMap"
#
lon.units = "degrees_east"
lon.long_name = "longitude coordinate"
lon.standard_name = "longitude"
#
lat.units = "degrees_north"
lat.long_name = "latitude coordinate"
lat.standard_name = "latitude"
#
alt.units = "m"
alt.long_name = "altitude"
alt.standard_name = "heigh"
#
val.long_name = "value"
val.esri_pe_string = 'GEOGCS["GCS_WGS_1984",DATUM["D_WGS_1984",SPHEROID["WGS_1984",6378137.0,298.257223563]],PRIMEM["Greenwich",0.0],UNIT["Degree",0.0174532925199433]]'
val.coordinates = "lon lat alt"
val.units = "Degree"
val.missing_value = -9999 #interval = 0.009999999776482582
interval = 0.01
#x = numpy.arange(-90,91,2.5) x = []
for i in range(0, XNumGrids):
x.append(StartLon + i * round(XReso, 3))
#x = numpy.array(x)
lon[:] = x #
#y = numpy.arange(-180,180,2.5)
y = []
for i in range(0, YNumGrids):
y.append(StartLat - i * round(YReso, 3))
#y = numpy.array(y)
lat[:] = y
# z = []
for i in range(0, ZNumGrids):
z.append(ZhighGrids[i])
#z = numpy.array(z)
alt[:] = z
# #kk = uniform(size=(2,3,4,5))
#print(kk) #val[::]=valueZYX
val[::] = valueXYZ #
rootgrp.close()

Python解析SWAN气象雷达数据--(解析、生成ASCII、Image、netCDF)的更多相关文章

  1. python爬虫的页面数据解析和提取/xpath/bs4/jsonpath/正则(1)

    一.数据类型及解析方式 一般来讲对我们而言,需要抓取的是某个网站或者某个应用的内容,提取有用的价值.内容一般分为两部分,非结构化的数据 和 结构化的数据. 非结构化数据:先有数据,再有结构, 结构化数 ...

  2. python爬虫---爬虫的数据解析的流程和解析数据的几种方式

    python爬虫---爬虫的数据解析的流程和解析数据的几种方式 一丶爬虫数据解析 概念:将一整张页面中的局部数据进行提取/解析 作用:用来实现聚焦爬虫的吧 实现方式: 正则 (针对字符串) bs4 x ...

  3. 数据解析_bs进行数据解析

    1.bs4进行数据解析 数据解析的原理 1.标签定位 2.提取标签,标签属性中存储的数据值 bs4数据解析的原理 1.实例化一个BeautifulSoup对象,并且将页面源码数据加载到该对象中 2.通 ...

  4. Python爬虫之三种数据解析方式

    一.引入 二.回顾requests实现数据爬取的流程 指定url 基于requests模块发起请求 获取响应对象中的数据 进行持久化存储 其实,在上述流程中还需要较为重要的一步,就是在持久化存储之前需 ...

  5. 05 Python网络爬虫的数据解析方式

    一.爬虫数据解析的流程 1.指定url 2.基于requests模块发起请求 3.获取响应中的数据 4.数据解析 5.进行持久化存储 二.解析方法 (1)正则解析 (2)bs4解析 (3)xpath解 ...

  6. Unity3d-XML文件数据解析&JSON数据解析

    1.XML文件数据解析:(首先须要导入XMLParser解析器,The latest released download from:http://dev.grumpyferret.com/unity/ ...

  7. python爬虫的页面数据解析和提取/xpath/bs4/jsonpath/正则(2)

    上半部分内容链接 : https://www.cnblogs.com/lowmanisbusy/p/9069330.html 四.json和jsonpath的使用 JSON(JavaScript Ob ...

  8. 如何使用fastJson来解析JSON格式数据和生成JSON格式数据

    由于项目用到了JSON格式的数据,在网上搜索到了阿里的fastjson比较好用,特此记录fastjson用法,以备以后查询之用. decode: 首先创建一个JSON解析类: public class ...

  9. python+jinja2实现接口数据批量生成工具

    在做接口测试的时候,我们经常会遇到一种情况就是要对接口的参数进行各种可能的校验,手动修改很麻烦,尤其是那些接口参数有几十个甚至更多的,有没有一种方法可以批量的对指定参数做生成处理呢. 答案是肯定的! ...

随机推荐

  1. 如何正确的加载和执行 JavaScript 代码

    无论当前 JavaScript 代码是内嵌还是在外链文件中,页面的下载和渲染都必须停下来等待脚本执行完成.JavaScript 执行过程耗时越久,浏览器等待响应用户输入的时间就越长.浏览器在下载和执行 ...

  2. POJ 2370

    //我的解题思路是先把输入的含有n个元素的数组a排序(从小到大),然后对前(n+1)/2个元素作如下的处理, //s+= (a[i]+1)/2 #include <iostream> #i ...

  3. POJ 1046

    #include<iostream> using namespace std; #define MAXN 16 #define inf 100000000 struct node { in ...

  4. Oracle 数据库维护管理之--数据库基本信息表管理与优化参考1

    1.查看当前系统中的会话(如果权限不足,请使用sys或者system用户登录): select * from v$session t; 2.查看此会话下正在执行的sql语句:select sql_te ...

  5. 剑指offer四十之数组中只出现一次的数字

    一.题目 一个整型数组里除了两个数字之外,其他的数字都出现了两次.请写程序找出这两个只出现一次的数字. 二.思路 建一个hashMap,统计各数字出现的次数,然后遍历hashMap,输出出现一次的数字 ...

  6. 48位MAC转化为唯一的128位IPV6地址

    根据EUI_64规范,一个MAC地址生成唯一的一个IPV6地址. ①.反转MAC的第七位为1. ②.在24bit后加入FFFE. ③.在最前面加上FE80::. 示例:

  7. eclipse中explorer显示方式

    不知道是不是上面的描述.做个记录 project explorer 项目资源管理器 这个要打开代码目录需要再点开java resources 还会出现deployment Descriptor项目工程 ...

  8. C++中虚函数的动态绑定和多态性

    目录 静态类型 vs 动态类型.静态绑定 vs 动态绑定 虚函数动态绑定实现机制.虚析构函数 多态性 一.静态 vs 动态 静态类型 VS 动态类型.静态类型指的是对象声明的类型,在编译器确定的.动态 ...

  9. SQLAlchemy之SQL Expression

    SQLAlchemy是一个强大的Python SQL工具箱, 提供了包括ORM在内的各种支持. 首先使用pip安装; pip install SQLAlchemy SQL Expression Lan ...

  10. node.js 读取文件

    一般用法 var path = require("path"); var fs = require("fs"); //let filePath = path.j ...