URAL 1807
题目大意:给出一个正整数n(n为合数),求n的一个划分(a1,a2,...,ak,...)(k>=2)。使得其在存在最大的最大公约数之下,存在最大的最小公倍数。
Time Limit:500MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u
数据规模:200<=n<=10^9。
理论基础:关于LCM的一个定理:LCM(a1,a2,a3,...,ai)为各个数分解质因数以后,所有存在的素数的最高幂次之积。具体参见链接1。
题目分析:
首先,要想有最大公公约数,那么假设它们的最大公约数为G,那么:G*(a1/G,a2/G,a3,...)=n,所以要想让G最大,那么只需要a1/G+a2/G+a3/G+...最小记为M,那么取M为n的最小素数因子即可。这样一来:M<=sqrt(10^9)<31625。问题转换为求素数M的一个划分,使划分中的数的嘴小公倍数最大。
根据定理,我们可以断言:将拆分成M=若干个1+p1^k1+p2^k2+p3^k3+...(其中p1,p2,p3,...等数两两互质且为素数)时,最小公倍数最大。
证明:首先,我们证明两两互质时最大。假设LCM最大时,仍有a1<=a2存在最大公约数k,那么a1=k*p,a2=k*q,这样一来a1与a2的最小公倍数为:k*p*q。那么我们进行如下操作。因为:a1,a2不互质,所以k>=2,那么我们将:a2拆成:a2=q+(k-1)*q,这样q,q(k-1),k*p,三个数两两互质且最小公倍数大于原来的最小公倍数,所以必然两两互质。
其次,我们证明,每个数都可以表示为:若干个1+p^k(p为素数),假设:存在合数(k*q)^i(k,p均为质数,且>=2),那么此数可以证明:k^i*p^i>k^i+p^i。(利用二元函数f(x,y)=(xy)^i-x^i-y^i可以证明,这里不多展开了)。所以,最后变为对各个素数的指数的动态规划问题。那么指标该怎么定呢?因为每两个数都是互质的,所以其最小公倍数即为已经存在的各个数之积,因为不需要求解LCM,所以大可用double存储。如果害怕double过大时,存在前十六位相同,导致状态转移错无,那我们可以用log来表示,因为:log是单增函数,且log(a*b)=loga+logb,便于状态转移。
double dp[N][M];
int pre[i][j];
我们用dp[i][j]表示用前i个数表示j时最优解,即log的最大值。
用pre[i][j]表示取dp[i][j]为最优解表示j时,j剩余的数。
状态转移方程:dp[i][j]=max(dp[i-1][j-p[i]]+logp[i],dp[i][j]);这样我们最后的最优解即为:dp[N][j]里最大的那一个然后:如果:j-pre[N][j]不为零的话就要输出(j-pre[N][j])*G,下来搜索dp[N-11][j-prime[N]]。最后dp[1][j]剩下来的值即为要输出的1*G的个数了。
代码如下:
#include<iostream>
#include<cstring>
#include<string>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<queue>
#include<ctime>
#include<vector>
using namespace std;
typedef double db;
#define DBG 0
#define maa (1<<31)
#define mii ((1<<31)-1)
#define sl(c) ((int)(c).size()) //取字符串长度;
#define forl(i, a, b) for(int i = (a); i < (b); ++i) //不带边界值循环,正序
#define forle(i, a, b) for(int i = (a); i <= (b); ++i) //带边界值循环,正序
#define forh(i, a, b) for(int i = (a); i > (b); --i) //不带边界值,逆序
#define forhe(i, a, b) for(int i = (a); i >= (b); --i) //带边界值,逆序
#define forlc(i, a, b) for(int i##_b = (b), i = (a); i < i##_b; ++i) //带别名的循环,用于不可改变值
#define forlec(i, a, b) for(int i##_b = (b), i = (a); i <= i##_b; ++i)
#define forgc(i, a, b) for(int i##_b = (b), i = (a); i > i##_b; --i)
#define forgec(i, a, b) for(int i##_b = (b), i = (a); i >= i##_b; --i)
#define forall(i, v ) forl(i, 0, sz(v)) //循环所有
#define forallc(i, v ) forlc(i, 0, sz(v))
#define forlla(i, v ) forhe(i, sz(v)-1, 0)
#define forls(i, n, a, b) for(int i = a; i != b; i = n[i]) //搜表用
#define rep(n) for(int repp = 0; repp < (n); ++repp)
#define repc(n) for(int repp_b = (n), repp = 0; repp < repp_b; ++repp)
#define rst(a, v) memset(a, v, sizeof a) //把字符v填充到a reset 重置
#define cpy(a, b) memcpy(a, b, sizeof a) //copy b 的sizeof(a)个字符到a
#define rstn(a, v, n) memset(a, v, (n)*sizeof((a)[0])) //把字符v填充到a[n]之前的字节
#define cpyn(a, b, n) memcpy(a, b, (n)*sizeof((a)[0])) //copy b 的 n 个字符到a
#define ast(b) if(DBG && !(b)) { printf("%d!!|\n", __LINE__); while(1) getchar(); } //调试
#define dout DBG && cout << __LINE__ << ">>| "
#define pr(x) #x"=" << (x) << " | "
#define mk(x) DBG && cout << __LINE__ << "**| "#x << endl
#define pra(arr, a, b) if(DBG) {\
dout<<#arr"[] |" <<endl; \
forlec(i, a, b) cout<<"["<<i<<"]="<<arr[i]<<" |"<<((i-(a)+1)%8?" ":"\n"); \
if((b-a+1)%8) puts("");\
} //数列查看
#define rd(type, x) type x; cin >> x //读数
inline int rdi() { int d; scanf("%d", &d); return d; }
inline char rdc() { scanf(" "); return getchar(); }
inline string rds() { rd(string, s); return s; }
inline db rddb() { db d; scanf("%lf", &d); return d; }
template<class T> inline bool updateMin(T& a, T b) { return a>b? a=b, true: false; }
template<class T> inline bool updateMax(T& a, T b) { return a<b? a=b, true: false; } typedef long long LL;
typedef long unsigned LU;
const int N=130;
const int M=40000;
double dp[N][M];
bool nprime[M]={true,true}; vector<int> prim;
int pre[N][M],n,m;
void init()
{
int bor=sqrt((float)M),temp;
forl(i,2,bor)
{
if(!nprime[i])
{
prim.push_back(i);
for(int j=i;(temp=j*i)<=M;j++)
nprime[temp]=true;
}
}
forlec(j,bor+1,M)
{
if(!nprime[j])prim.push_back(j);
}
pra(prim,0,prim.size()-1);
}
void solve(int n)
{
rst(dp,0);
int gcd=0,div;
for(int i=2;prim[i]*prim[i]<=n;i++)
{
if(n%prim[i]) continue;
gcd=n/prim[i];
break;
}
div=n/gcd;
forl(i,1,N)
{
int k=prim[i-1];
forlec(j,1,div)
{
dp[i][j]=dp[i-1][j];
pre[i][j]=j;
}
while(k<=div)
{
forlec(j,k,div)
{
if(dp[i][j]<dp[i-1][j-k]+log((double)k))
{
dp[i][j]=dp[i-1][j-k]+log((double)k);
pre[i][j]=j-k;
}
}
k*=prim[i-1];
}
}
int res[500],cnt=0,state=div,now=N-1;
int lcm=0;
forle(j,0,div)
{
if(lcm<dp[now][j])
{
lcm=dp[now][j];
state=j;
}
}
while(now)
{
int temp=pre[now][state];
if((state-temp)!=0)res[cnt++]=state-temp;
state=temp;
now--;
}
rep(state)res[cnt++]=1;
for(int i=0;i<cnt;i++) printf("%d%c",res[i]*gcd,i==cnt-1?'\n':' ');
}
int main()
{
init();
while(scanf("%d",&n)!=EOF)
{
if(n%2==0)
{
printf("%d %d\n",n/2,n/2);
continue;
}
if(n%3==0)
{
printf("%d %d\n",n/3*2,n/3);
continue;
}
solve(n);
}
return 0;
}
其中,对n%2,n%3的预处理可以省去很多麻烦,而且少了一大半的数。
参考文献:
http://zh.wikipedia.org/wiki/%E6%9C%80%E5%B0%8F%E5%85%AC%E5%80%8D%E6%95%B8
by:Jun_moon http://blog.csdn.net/Jsun_moon
URAL 1807的更多相关文章
- 后缀数组 POJ 3974 Palindrome && URAL 1297 Palindrome
题目链接 题意:求给定的字符串的最长回文子串 分析:做法是构造一个新的字符串是原字符串+反转后的原字符串(这样方便求两边回文的后缀的最长前缀),即newS = S + '$' + revS,枚举回文串 ...
- ural 2071. Juice Cocktails
2071. Juice Cocktails Time limit: 1.0 secondMemory limit: 64 MB Once n Denchiks come to the bar and ...
- ural 2073. Log Files
2073. Log Files Time limit: 1.0 secondMemory limit: 64 MB Nikolay has decided to become the best pro ...
- ural 2070. Interesting Numbers
2070. Interesting Numbers Time limit: 2.0 secondMemory limit: 64 MB Nikolay and Asya investigate int ...
- ural 2069. Hard Rock
2069. Hard Rock Time limit: 1.0 secondMemory limit: 64 MB Ilya is a frontman of the most famous rock ...
- ural 2068. Game of Nuts
2068. Game of Nuts Time limit: 1.0 secondMemory limit: 64 MB The war for Westeros is still in proces ...
- ural 2067. Friends and Berries
2067. Friends and Berries Time limit: 2.0 secondMemory limit: 64 MB There is a group of n children. ...
- ural 2066. Simple Expression
2066. Simple Expression Time limit: 1.0 secondMemory limit: 64 MB You probably know that Alex is a v ...
- ural 2065. Different Sums
2065. Different Sums Time limit: 1.0 secondMemory limit: 64 MB Alex is a very serious mathematician ...
随机推荐
- BeautifulSoup与Xpath解析库总结
一.BeautifulSoup解析库 1.快速开始 html_doc = """ <html><head><title>The Dor ...
- WinForm 使用 NPOI 2.2.1从datatable导出Excel
最新的NOPI应该是2.3了,但在官网上还是2.2.1. 也是第一次使用NPOI来导出Excel文件. 在写的时候搜不到2.2.1的教程,搜了一个2.2.0的教程. 不过也没什么问题,NPOI是真的方 ...
- BZOJ 2653: middle 主席树 二分
https://www.lydsy.com/JudgeOnline/problem.php?id=2653 因为是两个方向向外延伸所以不能对编号取前缀和(这里只有前缀和向后传递的性质,不是实际意义的和 ...
- Mysql 千万级快速查询|分页方案
1.简单的 直接查主键id SELECT id FROM tblist WHERE LIMIT 500000,10 2对于有where 条件,又想走索引用limit的,必须创建一个索引,将where ...
- 使用命令行编译和运行 c、Java和python程序
集成开发环境已经非常方便,从编写程序到执行程序看到结果,让我们不用关心中间的过程.但是使用原始的.命令的方式来将程序编译运行有的时候可能有些用,比如写个简答的程序,或者是身边没有集成工具的时候. C语 ...
- .vs目录有什么用?
写这篇博文的目的就是方便后来者能够在百度里轻松搜到. 反正我找了半天没找到关于.vs目录的介绍,最后还是在同事的帮助下才找到的. 参考地址:https://developercommunity.vis ...
- 新型穿墙监控雷达Range-R:让你的隐私无所遁形(转)
还是隐私问题,原帖地址:http://www.freebuf.com/news/57446.html 在我们的认知中,政府对民众的监控已经成为一种常态.从电话.电子邮件到通信聊天.社交网络,一切细节都 ...
- Error creating bean with name 'adminUserController': Injection of autowired dependencies failed;
spring 个坑爹地,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ...
- 【原】移动web资源整理(安卓、ios移动端兼容性问题归整)
meta基础知识 H5页面窗口自动调整到设备宽度,并禁止用户缩放页面 <meta name="viewport" content="width=device-wi ...
- Maven私仓配置
<?xml version="1.0" encoding="UTF-8"?> <settings xmlns="http://mav ...