优化中的subgradient方法
哎。刚刚submit上paper比較心虚啊。无心学习。还是好好码码文字吧。
subgradient介绍
subgradient中文名叫次梯度。和梯度一样,全然能够多放梯度使用。至于为什么叫子梯度,是由于有一些凸函数是不可导的,没法用梯度。所以subgradient就在这里使用了。
注意到。子梯度也是求解凸函数的。仅仅是凸函数不是处处可导。
f:X→R是一个凸函数,X∈Rn是一个凸集。
若是f在x′处∇f(x′)可导。考虑一阶泰勒展开式:
能够得到f(x)的一个下届(f(x)是一个凸函数)
若是f(x)在x′处不可导,仍然。能够得到一个f(x)的下届
这个g就叫做f(x)的子梯度。g∈Rn
非常明显。在一个点会有不止一个次梯度,在点x全部f(x)的次梯度集合叫做此微分∂f(x)
我们能够看出,当f(x)是凸集而且在x附近有界时,∂f(x)是非空的,而且∂f(x)是一个闭凸集。
次梯度性质
满足:
1)scaling:
2)addition:
3)point-wise maximum:f(x)=maxi=1,...,mfi(x)而且fi(x)是可微的,那么:
即全部该点函数值等于最大值的函数的梯度的凸包。
在非约束最优化问题中。要求解一个凸函数f:Rn→R的最小值
非常显然,若是f可导。那么我们仅仅须要求解导数为0的点
当f不可导的时候,上述条件就能够一般化成
也即0满足次梯度的定义
以下是次梯度法的一般方法:
1.t=1选择有限的正的迭代步长{αt}∞t=1
2.计算一个次梯度g∈∂f(xt)
3.更新xt+1=xt−αtgt
4.若是算法没有收敛。则t=t+1返回第二步继续计算
次梯度方法性质:
1.简单通用性:就是说第二步中,∂f(xt)不论什么一个次梯度都是能够的.
2.收敛性:仅仅要选择的步长合适。总会收敛的
3.收敛慢:须要大量的迭代才干收敛
4.非单调收敛:−gt不须要是下降方向。在这样的情况下,不能使用线性搜索选择合适的αt
5.没有非常好的停止准则
对于不同步长的序列的收敛结果
最好还是设ftbest=min{f(x1),..,f(xt)}是t次迭代中的最优结果
1.步长和不可消时(Non-summable diminishing step size):
limt→∞αt=0 而且∑∞t=1αt==∞
这样的情况能够收敛到最优解:limt→∞ftbest−f(x∗)=0
2.Constant step size:
αt=γ,where γ>0
收敛到次优解:limt→∞ftbest−f(x∗)≤αG2/2
3.Constant step length:
αt=γ||gt||(i.e. ||xt+1−xt||=γ),||g||≤G,∀g∈∂f
能够收敛到次优解limt→∞ftbest−f(x∗)≤γG/2
4.Polyak’s rule: αt=f(xt)−f(x∗)||gt||2
若是最优值f(x∗)可知则能够用这样的方法。
不等式约束的凸二次优化问题
问题formulate
一个不等式约束的凸二次优化问题能够表示为:
注意到ξi≥max(0,1−yi(wTxi+b)),而且当目标函数取得最优的时候,这里的等号是成立的,所以能够进行取代:
ξi=max(0,1−yi(wTxi+b))
所以就能够将这个二次悠哈问题改写成一个非约束凸优化问题
问题求解
由于
是可微的,而且
∂wf0(w,b)=w, ∂bf0(w,b)=0
函数fi(w,b)=max0,1−yi(wTxi+b)是一个点最大值。所以其次微分能够写作,全部active function的梯度的convex combination
i-th function | ∂wfi(w,b) | ∂bfi(w,b) |
---|---|---|
I+={i|yi(wTxi+b)>1} | 0 | 0 |
I0={i|yi(wTxi+b)=1} | Co{0,−yixi} | Co{0,−yi} |
I−={i|yi(wTxi+b)<1} | −yixi | −yi |
所以次微分能够写作∂f(w,b)=∂f0(w,b)+C∑mi=1∂fi(w,b)能够使用參数话的表示方法,设0≤βi≤1,i∈I0,所以就有g=[w′b′]∈∂f(x)
优化中的subgradient方法的更多相关文章
- 拓扑优化中SIMP方法与水平集方法有何优缺点,水平集法变换到高维,不是更复杂了
作者:周平章链接:https://www.zhihu.com/question/52008623/answer/187927508来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...
- 【C#代码实战】群蚁算法理论与实践全攻略——旅行商等路径优化问题的新方法
若干年前读研的时候,学院有一个教授,专门做群蚁算法的,很厉害,偶尔了解了一点点.感觉也是生物智能的一个体现,和遗传算法.神经网络有异曲同工之妙.只不过当时没有实际需求学习,所以没去研究.最近有一个这样 ...
- jquery 中一些 特殊方法 的特殊使用 一览表
cnblogs的页面, 一种是管理页面, 是随笔的列表 a full list of essays. 另一种是 首页. 要搜索文档的话, 就使用 "首页"的那种方式. 一个jque ...
- 优化PHP程序的方法(温故知新)
1. If a method c++an be static, declare it static. Speed improvement is by a factor of 4. 如果一个方法可静态化 ...
- Java String类中的intern()方法
今天在看一本书的时候注意到一个String的intern()方法,平常没用过,只是见过这个方法,也没去仔细看过这个方法.所以今天看了一下.个人觉得给String类中加入这个方法可能是为了提升一点点性能 ...
- [转]优化PHP程序的方法
1. If a method c++an be static, declare it static. Speed improvement is by a factor of 4. 如果一个方法可静态化 ...
- 网站静态化处理—web前端优化—中(12)
网站静态化处理—web前端优化—中(12) Web前端很多优化原则都是从如何提升网络通讯效率的角度提出的,但是这些原则使用的时候还是有很多陷阱在里面,如果我们不能深入理解这些优化原则背后所隐藏的技术原 ...
- 《JS权威指南学习总结--7.9 ES5中的数组方法》
内容要点: ES5中定义了9个新的数组方法来遍历.映射.过滤.检测.简化和搜索数组. 概述:首先,大多数方法的第一个参数接收一个函数,并且对数组的每个元素(或一个元素)调用一次该函数. 如果是稀疏数组 ...
- MySQL分页优化中的“INNER JOIN方式优化分页算法”到底在什么情况下会生效?
本文出处:http://www.cnblogs.com/wy123/p/7003157.html 最近无意间看到一个MySQL分页优化的测试案例,并没有非常具体地说明测试场景的情况下,给出了一种经典的 ...
随机推荐
- 如何阻止点击scrollviewer里面的单位内容时,自动滚动
<Style TargetType="{x:Type ListBoxItem}"> <Setter Property="FocusVisualStyle ...
- master..xp_fileexist
declare @sql varchar(800) set @sql='E:\temp.dbf'create table #tb(a bit,b bit,c bit) insert into #t ...
- MySQL学习笔记:delete from与truncate table的区别
在Mysql数据库的使用过程中,删除表数据可以通过以下2种方式: delete from table_name truncate table table_name (1)delete from语句可以 ...
- contabs.js 的使用
1. 先下载两个文件 https://files.cnblogs.com/files/xiaojf/style.css https://files.cnblogs.com/files/xiaojf/c ...
- Hive SQL综合案例
一 Hive SQL练习之影评案例 案例说明 现有如此三份数据:1.users.dat 数据格式为: 2::M::56::16::70072, 共有6040条数据对应字段为:UserID BigInt ...
- ASP.NET MVC5+ 路由特性
概述 ASP.NET MVC 5支持一种新的路由协议,称为路由特性. MVC5也支持以前定义路由的方式,你可以在一个项目中混合使用这两种方式来定义路由. 案例 1.使用Visual Studio 20 ...
- LeetCode 80. 删除排序数组中的重复项 II
LeetCode 80. 删除排序数组中的重复项 II
- mac 用密钥远程登陆
window远程登陆命令:mstsc A为本地主机(即用于控制其他主机的机器) ;B为远程主机(即被控制的机器Server), 假如ip为192.168.60.110;A和B的系统都是Linux 在A ...
- ecshop用户中心菜单选项显示内容标签
ecshop用户中心菜单选项有了,那肯定需要给相应的菜单选项添加内容,下面我们主要来讲下调用内容的标签,你也可以先访问一下用户中心菜单选项修改. 用户中心页面的内容分布在两个模板文件中:user_cl ...
- Hadoop Hive概念学习系列之hive里的JDBC编程入门(二十二)
Hive与JDBC示例 在使用 JDBC 开发 Hive 程序时, 必须首先开启 Hive 的远程服务接口.在hive安装目录下的bin,使用下面命令进行开启: hive -service hives ...