T1

牛牛刚学习了输入输出,他遇到了一道这样的题目。
输入2个整数a和b
保证输入的a和b在long long范围之内,即满足
-9223372036854775808 <= a, b <= 9223372036854775807
计算a+b的值,即这两个数字的和。
如果a+b在long long范围之内,即满足
-9223372036854775808 <= a + b <= 9223372036854775807
那么输出一行一个整数表示a+b的结果。
如果a+b不在long long范围之内,即越界了,那么输出"hello, %lld\n",包含引号。
具体可以参见样例。
 
题解:
题目虽然简单,但是还是值得一做。
关于判断a+b,
1.a、b异号或者一个是0,那么输出a+b即可。
反之,用高精判断。
高精比较麻烦的。
如果上限是C,A+B<=C等价于A<=C-B即可。
下限同理可以处理。
甚至有人利用溢出原理。
a、b同号,如果a+b不是同号,那么就溢出了。
 
然后,输出"hello, %lld\n"怎么办?
考察转义。
输出",就输出\"
输出%,就输出%%
输出\,就输出\\
所以,
printf("\"hello,%%lld\\n\"");
 

T2T3略

T4:
合法括号序列

键盘上有左括号(,右括号),和退格键-,共三个键。
牛牛希望按键n次,使得输入的字符串恰好一个合法的括号序列。
每按一次左括号(,字符串末尾追加一个左括号(
每按一次右括号),字符串末尾追加一个右括号)
每按一次退格键-,会删掉字符串的最后一个字符,
特别的,如果字符串为空,牛牛也可以按退格,但是什么都不会发生。

输出方案数对p取模,注意p可能不是质数。
注:只要按键方法不同,就是不同的方案,即使得到的序列一样。
对于所有数据: 2 <= n <= 1000, 2 <= p <= 10000
30分: n <= 40
70分: n <= 100
 
题解:
可以发现(我想不到),

方案数和具体括号序列无关,只和最终括号序列长度有关。

因为就这么多剩下的,那么管他是什么字符呢?

所以问题分成两个部分。

枚举括号序列的长度2k,

1.计算出来对于每一个长度2k,合法的括号序有多少个。

2.对于长度为2k的序列,方案数有多少。

乘法原理再加法原理即可。

对于1,是一个卡特兰数。

可以看:卡特兰数Catalan——定义、公式、模型总结

具体证明,可以直接转化成火车出栈顺序,或者走到(i,i)方案数。

预处理组合数。递推或者直接C(2n,n)-C(2n,n-1)

对于2,设f[i][j]表示,前i次操作后,序列长度为j的方案数。

f[i][j]=f[i-1][max(0,j-1)]+2*f[i-1][j+1]

为什么删除的操作转移有一个2

因为我们的f[i][j]其实也是一个可以变化成任意一个的合法序列,所以每个位置的填法要么是),或(,唯一确定的。

但是把这个位置删了,那么就可以“反悔”地把上一位随便填。

牛客网NOIP赛前集训营-普及组(第二场)的更多相关文章

  1. 牛客网NOIP赛前集训营-普及组(第二场)和 牛客网NOIP赛前集训营-提高组(第二场)解题报告

    目录 牛客网NOIP赛前集训营-普及组(第二场) A 你好诶加币 B 最后一次 C 选择颜色 D 合法括号序列 牛客网NOIP赛前集训营-提高组(第二场) A 方差 B 分糖果 C 集合划分 牛客网N ...

  2. [牛客网NOIP赛前集训营-普及组(第二场)]D-合法括号序列

    链接:https://www.nowcoder.com/acm/contest/165/D来源:牛客网 合法括号序列 键盘上有左括号(,右括号),和退格键-,共三个键. 牛牛希望按键n次,使得输入的字 ...

  3. 牛客网NOIP赛前集训营-普及组(第七场)

    链接:C 来源:牛客网 牛牛的同学给牛牛表演了一个读心术:牛牛先任意选定一个非负整数,然后进行N次操作:每次操作前,假设牛牛当前的数是a,那么这个操作可能是a = a + x, 或者a = a * x ...

  4. 牛客网NOIP赛前集训营-普及组(第一场)

    前三题略 T4: 题目描述 小A有n个长度都是L的字符串.这些字符串只包含前8个小写字符,'a'~'h'.但这些字符串非常的混乱,它们几乎长得互不相同.小A想通过一些规则,让它们长得尽可能相同.小A现 ...

  5. Nowcoder | [题解-N165]牛客网NOIP赛前集训营-普及组(第二场)

    啊...表示一大早还没睡醒就开始打比赛(开始前一分钟的我还在桌子上趴着休眠)...表示题目思路清奇(尤其C题)...但是我还是太蒻了...\(D\)题暴力都没打...题解正式开始之前先\(\%\)一下 ...

  6. 牛客网NOIP赛前集训营-普及组(第一场)C 括号

    括号 思路: dp 状态:dp[i][j]表示到i位置为止未匹配的 '(' 个数为j的方案数 状态转移: 如果s[i] == '(' dp[i][j] = dp[i-1][j] + dp[i-1][j ...

  7. 牛客网NOIP赛前集训营-普及组

    第一场: A-绩点 题目描述 小A刚考完大学考试.现在已经出了n门课的成绩,他想自己先算一下这些课的绩点是多少.设第i门课的他拿到的绩点是gpai,而这门课的学分是sci,那么他的总绩点用下面的公式计 ...

  8. 牛客网 NOIP赛前集训营-普及组(第四场)C--部分和 (高维前缀和)

    传送门 解题思路 高维前缀和模板题.首先,求前缀和有两种方式,比如说对于求二维前缀和来说. 第一种 : for(int i=1;i<=n;i++) for(int j=1;j<=n;j++ ...

  9. 牛客网NOIP赛前集训营-提高组(第四场)游记

    牛客网NOIP赛前集训营-提高组(第四场)游记 动态点分治 题目大意: \(T(t\le10000)\)组询问,求\([l,r]\)中\(k(l,r,k<2^{63})\)的非负整数次幂的数的个 ...

随机推荐

  1. sqli-labs学习笔记 DAY8

    DAY 8 sqli-lab Page-3 sqli-labs lesson 38 What is Stacked injection? https://blog.csdn.net/Fly_hps/a ...

  2. IIS 无法加载 CSS,JS的问题

    IIS 能加载 aspx,但不能加载里面的 js,css ,感觉有点坑. 解决方案如下:http://www.pageadmin.net/article/20121001/479.html 原来是没有 ...

  3. (转)一个简单的rest_framework demo

    转发:https://www.cnblogs.com/fu-yong/p/9100559.html models.py 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 from ...

  4. 卸载CentOS7自带的OpenJDK

    http://blog.csdn.net/xiegh2014/article/details/52343438

  5. iOS开发学习-放大长图与屏幕等宽

    /* 需要得到一个图片的放大比例,这个比例就是屏幕的宽度与图片真实宽度的比值 */ CGFloat newZoomScale = LZ_SCREEN_WIDTH / [_photoImageView. ...

  6. 1001.A+B Format (20)的感受

    这是提交到Github的object-oriented文件夹里面的代码:https://github.com/sonnypp/object-oriented/tree/master/1001. 一.解 ...

  7. 我是一名IT小小鸟

    我是一只it小小鸟 书中介绍了it界大牛们大学期间的学习方法和对未来的职业规划,相比他们,自我感觉相距甚远,对这学科的热情程度也远远比不上他们. 就拿目前数据结构这门高深的课程,应通过更多的课外扩展来 ...

  8. 第一个spring冲刺

    第一天商量讨论出我们选择的题目为四则运算,虽然在上一个学期已经做过了,但是还有完善的地方,希望能够做出创新,另外下面的燃尽图是我们预测的3个阶段的进度,按情况不同可能实际的情况也不同,但是我们会尽量跟 ...

  9. mysql 性能分析及explain用法

    转载自http://blog.sina.com.cn/s/blog_4586764e0100o9s1.html 使用explain语句去查看分析结果 如   explain select * from ...

  10. 封装react组件——三级联动

    思路: 数据设计:省份为一维数组,一级市为二维数组,二级市/区/县为三维数组.这样设计的好处在于根据数组索引实现数据的关联. UI组件: MUI的DropDownMenu组件或Select Field ...