题面

好久以前写的,发现自己居然一直没有写题解=。=

扩展欧拉定理:在$b>φ(p)$时有$a^b \equiv a^{b\%φ(p)+φ(p)}(mod$ $p)$

然后每次递归那个$a^{b\%φ(p)}$的部分,最后在$φ(p)=1$时返回即可

 #include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e7+;
int pri[N],npr[N],phi[N];
long long T,mod;
void prework()
{
phi[]=,npr[]=true;
for(int i=,sz=;i<=;i++)
{
if(!npr[i]) pri[++sz]=i,phi[i]=i-;
for(int j=;j<=sz&&i*pri[j]<=;j++)
{
npr[i*pri[j]]=true;
phi[i*pri[j]]=phi[i]*pri[j];
if(i%pri[j]) phi[i*pri[j]]-=phi[i]; else break;
}
}
}
long long qpow(long long x,long long k,long long md)
{
if(k==) return x%md;
long long tmp=qpow(x,k/,md);
return k%?tmp*tmp%md*x%md:tmp*tmp%md;
}
long long Gas(long long md)
{
return md==?:qpow(,Gas(phi[md])+phi[md],md);
}
int main ()
{
scanf("%lld",&T),prework();
while(T--)
{
scanf("%lld",&mod);
printf("%lld\n",Gas(mod));
}
return ;
}

解题:BZOJ 3884 上帝与集合的正确用法的更多相关文章

  1. bzoj 3884 上帝与集合的正确用法 指数循环节

    3884: 上帝与集合的正确用法 Time Limit: 5 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description   根据一些 ...

  2. BZOJ 3884 上帝与集合的正确用法

    Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作&quo ...

  3. 【数学】[BZOJ 3884] 上帝与集合的正确用法

    Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元” ...

  4. BZOJ 3884 上帝与集合的正确用法(扩展欧拉定理)

    Description   根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...

  5. bzoj 3884 上帝与集合的正确用法(递归,欧拉函数)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3884 [题意] 求2^2^2… mod p [思路] 设p=2^k * q+(1/0) ...

  6. BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]

    PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...

  7. BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)

    \(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...

  8. BZOJ 3884: 上帝与集合的正确用法 扩展欧拉定理 + 快速幂

    Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; ...

  9. BZOJ 3884 上帝与集合的正确用法题解

    一道智慧题 其实解这题需要用到扩展欧拉定理, 有了上面的公式,我们不难看出此题的解法. 设b为2^2^2^2^2.....显然,b要比φ(p)要大,所以可以直接套公式 modp时的答案 ans(p)= ...

随机推荐

  1. JAVA之异常处理(一)

    JAVA之异常处理(一) 1.异常概述 在程序的开发过程中,可能存在各种各样的错误,有些错误是可以避免的,而有些错误却是意想不到的,在Java中把这些可能发生的错误称为异常.异常类的继承关系如下图. ...

  2. CocoStuff—基于Deeplab训练数据的标定工具【三、标注工具的使用】

    一.说明 本文为系列博客第三篇,主要展示COCO-Stuff 10K标注工具的使用过程及效果. 本文叙述的步骤默认在完成系列文章[二]的一些下载数据集.生成超像素处理文件的步骤,如果过程中有提示缺少那 ...

  3. https、ssl、tls协议学习

    一.知识准备 1.ssl协议:通过认证.数字签名确保完整性:使用加密确保私密性:确保客户端和服务器之间的通讯安全 2.tls协议:在SSL的基础上新增了诸多的功能,它们之间协议工作方式一样 3.htt ...

  4. Codeblocks自动代码格式化快捷键(自带)

    代码区域右击 点format use AStyle 估计也就是考试竞赛逼着用这个

  5. 基于C#的机器学习--惩罚与奖励-强化学习

    强化学习概况 正如在前面所提到的,强化学习是指一种计算机以“试错”的方式进行学习,通过与环境进行交互获得的奖赏指导行为,目标是使程序获得最大的奖赏,强化学习不同于连督学习,区别主要表现在强化信号上,强 ...

  6. Java中&、|、&&、||详解

    1.Java中&叫做按位与,&&叫做短路与,它们的区别是: & 既是位运算符又是逻辑运算符,&的两侧可以是int,也可以是boolean表达式,当&两侧 ...

  7. D.王者荣耀交流协会——PSP Daily(测评人:贾男男)

    D.王者荣耀交流协会——PSP Daily(测评人:贾男男) 一.基于NABCD评论作品,及改进建议 每个小组评论其他小组beta发布的作品.1.根据(不限于)NABCD评论作品的选题;2.评论作品对 ...

  8. Beta周王者荣耀交流协会第五次Scrum会议

    1. 立会照片 成员王超,高远博,冉华,王磊,王玉玲,任思佳,袁玥全部到齐. master:王磊 2. 时间跨度 2017年11月14日 19:00 — 19:50 ,总计50分钟. 3. 地点 一食 ...

  9. js中模拟a标签的点击事件

    var a = document.createElement('a'); a.target = "_blank"; a.href = "personal"; a ...

  10. 《Spring 2之站立会议3》

    <Spring 2之站立会议3> 昨天,查找了本机的端口号,并对代码作进一步的了解. 今天,对我们项目的基本框架进行了了解,即主界面和各个分界面的基本架构: 遇到的问题,虽然了解了基本框架 ...