解题:BZOJ 3884 上帝与集合的正确用法
好久以前写的,发现自己居然一直没有写题解=。=
扩展欧拉定理:在$b>φ(p)$时有$a^b \equiv a^{b\%φ(p)+φ(p)}(mod$ $p)$
然后每次递归那个$a^{b\%φ(p)}$的部分,最后在$φ(p)=1$时返回即可
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e7+;
int pri[N],npr[N],phi[N];
long long T,mod;
void prework()
{
phi[]=,npr[]=true;
for(int i=,sz=;i<=;i++)
{
if(!npr[i]) pri[++sz]=i,phi[i]=i-;
for(int j=;j<=sz&&i*pri[j]<=;j++)
{
npr[i*pri[j]]=true;
phi[i*pri[j]]=phi[i]*pri[j];
if(i%pri[j]) phi[i*pri[j]]-=phi[i]; else break;
}
}
}
long long qpow(long long x,long long k,long long md)
{
if(k==) return x%md;
long long tmp=qpow(x,k/,md);
return k%?tmp*tmp%md*x%md:tmp*tmp%md;
}
long long Gas(long long md)
{
return md==?:qpow(,Gas(phi[md])+phi[md],md);
}
int main ()
{
scanf("%lld",&T),prework();
while(T--)
{
scanf("%lld",&mod);
printf("%lld\n",Gas(mod));
}
return ;
}
解题:BZOJ 3884 上帝与集合的正确用法的更多相关文章
- bzoj 3884 上帝与集合的正确用法 指数循环节
3884: 上帝与集合的正确用法 Time Limit: 5 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 根据一些 ...
- BZOJ 3884 上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新的元素,称作&quo ...
- 【数学】[BZOJ 3884] 上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元” ...
- BZOJ 3884 上帝与集合的正确用法(扩展欧拉定理)
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- bzoj 3884 上帝与集合的正确用法(递归,欧拉函数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3884 [题意] 求2^2^2… mod p [思路] 设p=2^k * q+(1/0) ...
- BZOJ 3884: 上帝与集合的正确用法 [欧拉降幂]
PoPoQQQ大爷太神了 只要用欧拉定理递归下去就好了.... 然而还是有些细节没考虑好: $(P,2) \neq 1$时分解$P=2^k*q$的形式,然后变成$2^k(2^{(2^{2^{...}} ...
- BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)
\(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...
- BZOJ 3884: 上帝与集合的正确用法 扩展欧拉定理 + 快速幂
Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; ...
- BZOJ 3884 上帝与集合的正确用法题解
一道智慧题 其实解这题需要用到扩展欧拉定理, 有了上面的公式,我们不难看出此题的解法. 设b为2^2^2^2^2.....显然,b要比φ(p)要大,所以可以直接套公式 modp时的答案 ans(p)= ...
随机推荐
- AssertionError
(1)p1 = multiprocessing.Process(test1)p2 = multiprocessing.Process(target=test2) 错误: p1缺少target,应为(t ...
- NIO基本概念
1. IO和NIO的区别 IO 面向流(stream oriented) 阻塞(blocking io) 无 NIO 面向缓冲区(buffer orie ...
- 2018年第九届蓝桥杯【C++省赛B组】
2标题:明码 汉字的字形存在于字库中,即便在今天,16点阵的字库也仍然使用广泛.16点阵的字库把每个汉字看成是16x16个像素信息.并把这些信息记录在字节中. 一个字节可以存储8位信息,用32个字节就 ...
- Thunder-Final冲刺中间产物-2017秋-软件工程第十二次作业
Thunder-Final发布中间产物(WBS&PSP) WBS: 分解方式:按照「爱阅」阅读器的实施过程分解 使用工具:visio 2013 PSP: PSP 预期时间 Planning 计 ...
- First Blood
自我介绍 大家好!我的名字是戴俊涵,代号211606359,喜欢看电影和古风音乐,也是一个资深漫迷(让世界感受痛楚吧),喜欢的美食是牛排. 回想初衷 (1)回想一下你初入大学时对本专业的畅想 当初你是 ...
- c# 写文件注意问题及用例展示
以txt写string举例,正确代码如下: private void xie() { FileStream fs = new FileStream("1.txt", FileMod ...
- 解决Cygwin编译cocos2dx 遇到的 error: 'UINT64_C' was not declared in this scope 问题
环境工具:Win10.VS2013.cocos2d-x-2.2.6.Cygwin.ADT 问题来源:写了一个小游戏,VS2013上运行成功,就尝试着打包apk,项目导入到ADT里面,添加了cocos2 ...
- 假如 GFW 遇上 ML
我稍微试了一下梯子 我稍微试了一下梯子,在有梯子的情况下进行google搜索,然后wireshark 抓包.所有问题跃然纸上 当前我认为:> 只要你和一个非国内的服务器长时高频交换数据,基本上就 ...
- 虚拟机环境下DPDK运行时的一些错误解决
在绑定网卡到DPDK模块时 报错 :is active. Not modifying Routing table indicates that interface 0000:02:01.0 is ac ...
- 【CSAPP笔记】5. 汇编语言——数据
本博客对于汇编的介绍基于32位机器的Intel x86系列处理器和IA32指令集,也涉及少部分x86-64.由于汇编知识相对复杂,这里只做简单介绍和记录,详细请参照书本! 数据格式 下面这张表格中体现 ...