python conv2d scipy卷积运算
scipy的signal模块经常用于信号处理,卷积、傅里叶变换、各种滤波、差值算法等。
*两个一维信号卷积
>>> import numpy as np
>>> x=np.array([1,2,3])
>>> h=np.array([4,5,6])
>>> import scipy.signal
>>> scipy.signal.convolve(x,h) #卷积运算
array([ 4, 13, 28, 27, 18])
- 1
- 2
- 3
- 4
- 5
- 6
卷积运算大致可以分成3步,首先先翻转,让两个信号列反过来,如上面就是1,2,3和6,5,4。然后作平移,6,5,4最开始在1,2,3的左边,没有重叠,现在向右移动,4和1就重叠了。对于重叠的部分,作乘积求和。也就是1x4得到第一个结果1,然后再移动后5x1+4x2得到第二个结果13以此类推。
卷积运算可以用来做大整数的乘法(数组表示数的乘法),比如在上面的例子中,要求123乘以456,可以先得到它的卷积序列,然后从后往前,18将8保留,进位1给27;然后27变成28,把8保留进位2给28;然后28变成30,把0保留进位3给13;然后13变成16,把6保留进位1给4;4变成5即是最高位。也就是乘法的结果是56088。
*对白噪声卷积
>>> import numpy as np
>>> from scipy import signal
>>> import matplotlib.pyplot as plt
>>> sig=np.random.randn(1000) #生成随机数
>>> autocorr=signal.fftconvolve(sig,sig[::-1],mode='full') #fft算法实现卷积
>>> fig,(ax_orig,ax_mag)=plt.subplots(2,1) #建立两行一列图形
>>> ax_orig.plot(sig) #在第一行把原始的随机数序列sig画出来
[<matplotlib.lines.Line2D object at 0x0000000006E1DC88>]
>>> ax_orig.set_title('White noise') #设置标题'白噪声'
<matplotlib.text.Text object at 0x0000000006931860>
>>> ax_mag.plot(np.arange(-len(sig)+1,len(sig)),autocorr) #卷积后的图像
[<matplotlib.lines.Line2D object at 0x0000000006E1DB00>]
>>> ax_mag.set_title('Autocorrelation') #设置标题
<matplotlib.text.Text object at 0x0000000006DFE8D0>
>>> fig.tight_layout() #此句可以防止图像重叠
>>> fig.show() #显示图像
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
fftconvolve只是用fft算法(快速傅立叶变换)实现的卷积,其结果应当和普通的convolve一样。
*二维图像卷积运算
>>> import numpy as np
>>> from scipy import signal
>>> from scipy import misc
>>> import matplotlib.pyplot as plt
>>> face=misc.face(gray=True) #创建一个灰度图像
>>> scharr=np.array([[-3-3j,0-10j,+3-3j],
[-10+0j,0+0j,+10+0j],
[-3+3j,0+10j,+3+3j]]) #设置一个特殊的卷积和
>>> grad=signal.convolve2d(face,scharr,boundary='symm',mode='same') #把图像的face数组和设计好的卷积和作二维卷积运算,设计边界处理方式为symm
>>> fig,(ax1,ax2)=plt.subplots(1,2,figsize=(10,6)) #建立1行2列的图fig
>>> ax1.imshow(face,cmap='gray') #显示原始的图
<matplotlib.image.AxesImage object at 0x00000000078FC198>
>>> ax1.set_axis_off() #不显示坐标轴
>>> ax2.imshow(np.absolute(grad),cmap='gray') #显示卷积后的图
<matplotlib.image.AxesImage object at 0x00000000078FCE48>
>>> ax2.set_axis_off() #不显示坐标轴
>>> fig.show() #显示绘制好的画布
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
二维的卷积需要用上面的signal.convolve2d()。
之所以要对卷积后的图像数组grad作np.absolute()求绝对值运算是因为灰度图像的值都是正值,没有负的,为了防止出现负值所以才这样做。
二维的卷积运算还有一种函数,是signal.sepfir2d(),它可以传入三个参数,后两个参数指定行和列的卷积和(两个方向上的卷积是可以不同的,分别指定卷积和序列)。
python conv2d scipy卷积运算的更多相关文章
- python Scipy积分运算大全(integrate模块——一重、二重及三重积分)
python中Scipy模块求取积分的方法: SciPy下实现求函数的积分的函数的基本使用,积分,高等数学里有大量的讲述,基本意思就是求曲线下面积之和. 其中rn可认为是偏差,一般可以忽略不计,wi可 ...
- python(5):scipy之numpy介绍
python 的scipy 下面的三大库: numpy, matplotlib, pandas scipy 下面还有linalg 等 scipy 中的数据结构主要有三种: ndarray(n维数组), ...
- python中的张量运算(tensor)
1,首先比较二者的参数部分:这就是处理0阶张量和1阶张量的区别 np.max:(a, axis=None, out=None, keepdims=False) 求序列的最值 最少接收一个参数 axis ...
- 卷积运算的本质,以tensorflow中VALID卷积方式为例。
卷积运算在数学上是做矩阵点积,这样可以调整每个像素上的BGR值或HSV值来形成不同的特征.从代码上看,每次卷积核扫描完一个通道是做了一次四重循环.下面以VALID卷积方式为例进行解释. 下面是pyth ...
- LeNet - Python中的卷积神经网络
本教程将 主要面向代码, 旨在帮助您 深入学习和卷积神经网络.由于这个意图,我 不会花很多时间讨论激活功能,池层或密集/完全连接的层 - 将来会有 很多教程在PyImageSearch博客上将 ...
- iOS中的图像处理(二)——卷积运算
关于图像处理中的卷积运算,这里有两份简明扼要的介绍:文一,文二. 其中,可能的一种卷积运算代码如下: - (UIImage*)applyConvolution:(NSArray*)kernel { C ...
- Python对象类型及其运算
Python对象类型及其运算 基本要点: 程序中储存的所有数据都是对象(可变对象:值可以修改 不可变对象:值不可修改) 每个对象都有一个身份.一个类型.一个值 例: >>> a1 = ...
- im2col:将卷积运算转为矩阵相乘
目录 im2col实现 优缺点分析 参考 博客:blog.shinelee.me | 博客园 | CSDN im2col实现 如何将卷积运算转为矩阵相乘?直接看下面这张图,以下图片来自论文High P ...
- MATLAB卷积运算(conv、conv2、convn)解释
1 conv(向量卷积运算) 所谓两个向量卷积,说白了就是多项式乘法.比如:p=[1 2 3],q=[1 1]是两个向量,p和q的卷积如下:把p的元素作为一个多项式的系数,多项式按升幂(或降幂)排列, ...
随机推荐
- Linux学习笔记 3 权限篇
chmod 查看命令 ls -l - rwx r_x r_x 4 user grop ...
- SolidWorks基础-快速入门
SolidWorks 介绍 SolidWorks 是一款机械设计自动化软件包 用于设计与分析机械结构 SolidWorks主要是工程师表达自己思想的工具 学习 SolidWorks 的方法 找一个基础 ...
- 潭州课堂25班:Ph201805201 django框架 第九课 模型补充 博客小案例 (课堂笔记)
聚合查询: 分组查询: annotate() 方法 例:查询某学院学生人数,(一对多查询) 以字典的形式输出 annotate(统计 ‘关联学生字段 出现的次,).字典形式(键,值) 例:查询每项课程 ...
- spring 空指针报错,Could not create connection to database server.
驱动问题,换成最近版本的mysql驱动
- [P2704][NOI2001]炮兵阵地 (状态压缩)
最近抄状压的代码…… 然后盯上了这个题目 调试了一个晚上,终于A了 但是是对着宝典打的,我依然不懂状态压缩 那么下一步先把装压放一放,学一下树形DP吧 #include<cstdio> # ...
- mvc中使用Pagination,对其进行再封装
对其进行再次封装: (function($) { $["fn"]["easyPaging"] = function(o) { if (!o.pageSelect ...
- 【二分+拓扑排序】Milking Order @USACO 2018 US Open Contest, Gold/upc_exam_6348
目录 Milking Order @USACO 2018 US Open Contest, Gold/upc_exam_6348 PROBLEM 题目描述 输入 输出 样例输入 样例输出 提示 MEA ...
- ajax冲刺03
---恢复内容开始--- 1.jq中ajax封装 简单的$.ajax方法使用示例:请关注 传参类型及数据 <!DOCTYPE html> <html lang="en&qu ...
- kvm部署
第一:安装前准备 vmware workstation的虚拟机做kvm实验,需要开启嵌套虚拟化 1.首先在物理机BIOS设置里开启虚拟化功能 2.其次需要在vm里面开启一下两个功能,(关闭虚拟机勾选即 ...
- pygame-KidsCanCode系列jumpy-part11-角色动画(下)
接上节继续,上节并没有处理向左走.向右走的动画效果,这节补上,看似很简单,但是有一些细节还是要注意: def jump(self): hits = pg.sprite.spritecollide(se ...