Too Simple

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1214    Accepted Submission(s): 406

Problem Description
Rhason Cheung had a simple problem, and asked Teacher Mai for help. But Teacher Mai thought this problem was too simple, sometimes naive. So she ask you for help.

Teacher Mai has m functions f1,f2,⋯,fm:{1,2,⋯,n}→{1,2,⋯,n}(that means for all x∈{1,2,⋯,n},f(x)∈{1,2,⋯,n}). But Rhason only knows some of these functions, and others are unknown.

She wants to know how many different function series f1,f2,⋯,fm there are that for every i(1≤i≤n),f1(f2(⋯fm(i)))=i. Two function series f1,f2,⋯,fm and g1,g2,⋯,gm are considered different if and only if there exist i(1≤i≤m),j(1≤j≤n),fi(j)≠gi(j).

 
Input
For each test case, the first lines contains two numbers n,m(1≤n,m≤100).

The following are m lines. In i-th line, there is one number −1 or n space-separated numbers.

If there is only one number −1, the function fi is unknown. Otherwise the j-th number in the i-th line means fi(j).

 
Output
For each test case print the answer modulo 109+7.
 
Sample Input
3 3
1 2 3
-1
3 2 1
 
Sample Output
1

Hint

The order in the function series is determined. What she can do is to assign the values to the unknown functions.

 
 
一开始看起来很复杂,想了想发现只要保证最后一个函数是任意的,中间的其他函数都没问题。
但是有一个坑的情况是,可能一个任意函数也没有,全都是固定的函数,这时要验证这组函数是否可行。我们当时验证的顺序弄反,卡了一场,真是too simple。
最近做的题都是模拟题啊,,,太没技术含量了,,,,
 
 #include <cstdio>
#include <algorithm>
#include <cstring>
#include <ctype.h>
#include <cstdlib>
#include <stack>
#include <set>
#include <map>
#include <queue>
#include <string>
#include <cmath> using namespace std;
const long long MOD = 1e9+; int N,T,M;
int func[][],vis[];
long long nn; long long qpow(long long a,long long i,long long n)
{
if(i == ) return % n;
long long temp = qpow(a,i>>,n);
temp = temp * temp % n;
if( i& ) temp = temp * a % n;
return temp;
} long long mi(long long a,int t)
{
long long ans = ;
for(int i=;i<t;i++) {ans *= a;ans %= MOD;}
return ans;
} long long solve()
{
for(int i=;i<=N;i++)
{
int ans = i;
for(int j=M-;j>=;j--)
{
ans = func[j][ans-];
}
if(ans != i) return 0LL;
}
return 1LL;
} int main()
{
while(~scanf("%d%d",&N,&M))
{
long long cnt = 0LL,ans = 0LL;
nn = 1LL;
int flag = ;
for(int i=; i <= N;i++) {nn *= i; nn %= MOD;} for(int i=;i<M;i++)
{
memset(vis,,sizeof vis);
if(scanf("%d",&func[i][]) && (func[i][] == -))
{
cnt++;
}
else
{
vis[func[i][]]++;
for(int j=;j<N;j++)
{
scanf("%d",&func[i][j]);
if( vis[func[i][j]] ) flag = ;
else vis[func[i][j]]++;
}
}
} if(flag) ans = 0LL;
else if(cnt > ) { ans = mi(nn,cnt-); ans %= MOD;}
else
{
ans = solve();
} printf("%I64d\n",ans%MOD);
}
}
 

HDU5399-多校-模拟的更多相关文章

  1. NOIP2012 普及组真题 4.13校模拟

    考试状态: 我今天抽签看了洛谷的… 这我能怂???凶中带吉,我怕考试??我!不!怕! 看着整个机房的男同学们,我明白我是不会触发我的忌了.很好,开刷. A. [NOIP2012普及组真题] 质因数分解 ...

  2. NOIP2019普及级别模拟 3.30校模拟

    好吧我还是第一次写这种总结类的玩意… 考场心情…hmm…我没睡醒.是的是这样的,反正题都有两三个看错了或者没看懂… 最关键的是!!我!居!然!把!Freopen!写!在!了!程!序!最!后! 然后就和 ...

  3. [NOIP2018校模拟赛]T1 阶乘

    题目: 描述 有n个正整数a[i],设它们乘积为p,你可以给p乘上一个正整数q,使p*q刚好为正整数m的阶乘,求m的最小值. 输入 共两行. 第一行一个正整数n. 第二行n个正整数a[i]. 输出 共 ...

  4. 九校模拟——餐馆(restaurant)

    1 餐馆(restaurant) 1.1 题目背景 铜企鹅是企鹅餐馆的老板,他正在计划如何使得自己本年度收益增加. 1.2 题目描述 共有n 种食材,一份食材i 需要花ti 小时不间断地进行播种,施肥 ...

  5. [NOIP2018校模拟赛]T2矩阵分组 Matrix

    题目链接: 矩阵分组 分析: 这道题求的是两部分极差当中大的那个的最小值.对于这种求最值的问题,我们很自然(其实并没有)地想到二分答案. 这个题有两个结论: (好像当时看出来了第一个?然后发现下面都不 ...

  6. [NOIP2018校模拟赛]T1聚会 party

    题目链接: 聚会 分析: 设每个点到1号点的距离为dist_{i},每个点的权值为x_{i},目标点到1号点的距离为dist,权值为x,那么对于每一次查询,我们讨论三种情况: ① 目标家庭在区间左边( ...

  7. NOIP 模拟 七十一

    最后一场多校模拟赛,好像是信心赛??不过考的不行..最近难题比较多,对题目的难度把握不够好,经常出现简单题跳过的现象. 100+100+20+40 T1 签到题(qiandao) 如果一个点的度数不是 ...

  8. dir命令只显示文件名

    dir /b 就是ls -f的效果 1057 -- FILE MAPPING_web_archive.7z 2007 多校模拟 - Google Search_web_archive.7z 2083 ...

  9. AGC016题解

    呼我竟然真的去刷了016QwQ[本来以为就是个flag的233] 感觉AGC题目写起来都不是很麻烦但是确实动脑子qvq[比较适合训练我这种没脑子选手] 先扔个传送门:点我 A.Shrinking 题意 ...

随机推荐

  1. 《Google软件测试之道》简介

    <Google软件测试之道>,一直听朋友讲起这本书,出于琐事太多,一直没机会拜读,最近部门架构觉得我们IT部门的技术太low,就给我们挑选了一些书籍,让我们多看看... 个人的一种学习习惯 ...

  2. Asp.net中web.config配置文件详解(一)

    本文摘自Asp.net中web.config配置文件详解 web.config是一个XML文件,用来储存Asp.NET Web应用程序的配置信息,包括数据库连接字符.身份安全验证等,可以出现在Asp. ...

  3. React-state props与render()的关系

    state或者props发生改变,render()j就会执行一次. 父组件的render()被重新执行时,它的子组件的render()都会重新执行.

  4. Linux系统特殊变量

    系统给定的特殊变量: 变量名 作用 $0 当前脚本的名字 $n 传递给脚本或者函数的参数,n表示第几个参数 $# 传递给脚本或函数的参数个数 $* 传递给脚本或函数的所有参数 $@ 传递给脚本或者函数 ...

  5. Openstack部署踩坑

    第一周: 使用kola部署Openstack,vip_address有问题,双网上也不行,就是部署不了,但all-in-one却可以,可是节点不会加. 第二周: 使用Packstack部署Openst ...

  6. Netdata---Linux系统性能实时监控平台部署记录

    通常来说,作为一个Linux的SA,很有必要掌握一个专门的系统监控工具,以便能随时了解系统资源的占用情况.下面就介绍下一款Linux性能实时监测工具-Netdata,它是Linux系统实时性能监测工具 ...

  7. tomcat内存溢出问题记录

    问题说明:公司内网环境中部署的jenkins代码发版平台突然不能访问了,查看tomcat的catalina.out日志发现报错如下: [root@redmine logs]# tail -f /srv ...

  8. 修改docker的地址为阿里云源

    https://blog.csdn.net/jacabe/article/details/78575316

  9. main函数是必须的吗

    研究实验4 研究过程: 问题引出:C语言编程非得用主函数main吗,不用是否可以? 对此问题进行研究,用tc.exe书写代码如下: 图1  没有main函数的c程序 对其进行编译,链接发现,编译阶段可 ...

  10. 12.10 Daily Scrum

    各种大作业,进度会放缓一些.   Today's Task Tomorrow's Task 丁辛 完善餐厅列表,显示距离. 实现和菜谱相关的餐厅列表.             邓亚梅          ...