大整数加减运算的C语言实现

标签: 大整数加减 C


一. 问题提出

培训老师给出一个题目:用C语言实现一个大整数计算器。初步要求支持大整数的加、减运算,例如8888888888888+1112=88888888900001000000000000-999999999999=1

C语言中,整型变量所能存储的最宽数据为0xFFFF FFFF,对应的无符号数为4294967295,即无法保存超过10位的整数。注意,此处"10位"指数学中的10个数字,并非计算机科学中的10比特。浮点类型double虽然可以存储更多位数的整数,但一方面常数字面量宽度受编译器限制,另一方面通过浮点方式处理整数精度较低。例如:

    double a = 1377083362513770833626.0, b=1585054852315850548524.0;
printf("res = %.0f\n", a+b);

输出为res = 2962138214829621510144,而正确值应为2962138214829621382150。

既然基本数据类型无法表示大整数,那么只能自己设计存储方式来实现大整数的表示和运算。通常,输入的大整数为字符串形式。因此,常见的思路是将大整数字符串转化为数组,再用数组模拟大整数的运算。具体而言,先将字符串中的数字字符顺序存入一个较大的整型数组,其元素代表整数的某一位或某几位(如万进制);然后根据运算规则操作数组元素,以模拟整数运算;最后,将数组元素顺序输出。

数组方式操作方便,实现简单,缺点是空间利用率和执行效率不高。也可直接操作大整数字符串,从字符串末尾逆向计算。本文实现就采用这种方式。

二. 代码实现

首先,给出几个宏定义和运算结构:

#include<stdio.h>
#include<stdlib.h>
#include<string.h> #define ADD_THRES (sizeof("4294967295")-2) //两个9位整数相加不会溢出
#define MUL_THRES (sizeof("65535")-2) //两个4位整数相乘不会溢出
#define OTH_THRES (sizeof("4294967295")-1) //两个10位整数相减或相除不会溢出 typedef struct{
char *leftVal;
char *rightVal;
char operator;
}MATH_OPER;

基于上述定义,以下将依次给出运算代码的实现。

加法运算主要关注相加过程中的进位问题:

void Addition(char *leftVal,  char *rightVal,
char *resBuf, unsigned int resbufLen) {
unsigned int leftLen = strlen(leftVal);
unsigned int rightLen = strlen(rightVal); unsigned char isLeftLonger = (leftLen>=rightLen) ? 1 : 0;
unsigned int longLen = isLeftLonger ? leftLen : rightLen;
if(resbufLen < longLen) { //possible carry + string terminator
fprintf(stderr, "Not enough space for result(cur:%u)!\n", resbufLen);
return;
} char *longAddend = isLeftLonger ? leftVal : rightVal;
char *shortAddend = isLeftLonger ? rightVal : leftVal;
unsigned int diffLen = isLeftLonger ? (leftLen-rightLen) : (rightLen-leftLen);
//a carry might be generated from adding the most significant digit
if((leftLen == rightLen) && (leftVal[0]-'0'+rightVal[0]-'0' >= 9))
resBuf += 1; unsigned int carry = 0;
int i = longLen-1;
for(; i >= 0; i--) {
unsigned int leftAddend = longAddend[i] - '0';
unsigned int rightAddend = (i<diffLen) ? 0 : shortAddend[i-diffLen]-'0';
unsigned int digitSum = leftAddend + rightAddend + carry;
resBuf[i] = digitSum % 10 + '0';
carry = (digitSum >= 10) ? 1 : 0;
}
if(carry == 1) {
resBuf -= 1;
resBuf[0] = '1';
}
else if(leftVal[0]-'0'+rightVal[0]-'0' == 9) {
resBuf -= 1;
resBuf[0] = ' '; //fail to generate a carry
}
}

注意第33~36行的处理,当最高位未按期望产生进位时,原来为0的resBuf[0]被置为空格字符,否则将无法输出运算结果。当然,也可将resBuf整体前移一个元素。

减法运算相对复杂,需要根据被减数和减数的大小调整运算顺序。若被减数小于减数("11-111"或"110-111"),则交换被减数和减数后再做正常的减法运算,并且结果需添加负号前缀。此外,还需关注借位问题。

void Subtraction(char *leftVal,  char *rightVal,
char *resBuf, unsigned int resbufLen) {
int cmpVal = strcmp(leftVal, rightVal);
if(!cmpVal) {
resBuf[0] = '0';
return;
} unsigned int leftLen = strlen(leftVal);
unsigned int rightLen = strlen(rightVal);
unsigned char isLeftLonger = 0;
if((leftLen > rightLen) || //100-10
(leftLen == rightLen && cmpVal > 0)) //100-101
isLeftLonger = 1;
unsigned int longLen = isLeftLonger ? leftLen : rightLen;
if(resbufLen <= longLen) { //string terminator
fprintf(stderr, "Not enough space for result(cur:%u)!\n", resbufLen);
return;
} char *minuend = isLeftLonger ? leftVal : rightVal;
char *subtrahend = isLeftLonger ? rightVal : leftVal;
unsigned int diffLen = isLeftLonger ? (leftLen-rightLen) : (rightLen-leftLen);
//a borrow will be generated from subtracting the most significant digit
if(!isLeftLonger) {
resBuf[0] = '-';
resBuf += 1;
} unsigned int borrow = 0;
int i = longLen-1;
for(; i >= 0; i--)
{
unsigned int expanSubtrahend = (i<diffLen) ? '0' : subtrahend[i-diffLen];
int digitDif = minuend[i] - expanSubtrahend - borrow;
borrow = (digitDif < 0) ? 1 : 0;
resBuf[i] = digitDif + borrow*10 + '0';
//printf("[%d]Dif=%d=%c-%c-%d -> %c\n", i, digitDif, minuend[i], expanSubtrahend, borrow, resBuf[i]);
} //strip leading '0' characters
int iSrc = 0, iDst = 0, isStripped = 0;
while(resBuf[iSrc] !='\0') {
if(isStripped) {
resBuf[iDst] = resBuf[iSrc];
iSrc++; iDst++;
}
else if(resBuf[iSrc] != '0') {
resBuf[iDst] = resBuf[iSrc];
iSrc++; iDst++;
isStripped = 1;
}
else
iSrc++;
}
resBuf[iDst] = '\0';
}

对于Addition()和Subtraction()函数,设计测试用例如下:

#include<assert.h>
#define ASSERT_ADD(_add1, _add2, _sum) do{\
char resBuf[100] = {0}; \
Addition(_add1, _add2, resBuf, sizeof(resBuf)); \
assert(!strcmp(resBuf, _sum)); \
}while(0)
#define ASSERT_SUB(_minu, _subt, _dif) do{\
char resBuf[100] = {0}; \
Subtraction(_minu, _subt, resBuf, sizeof(resBuf)); \
assert(!strcmp(resBuf, _dif)); \
}while(0)
void VerifyOperation(void) {
ASSERT_ADD("22", "1686486458", "1686486480");
ASSERT_ADD("8888888888888", "1112", "8888888890000");
ASSERT_ADD("1234567890123", "1", "1234567890124");
ASSERT_ADD("1234567890123", "3333333333333", "4567901223456");
ASSERT_ADD("1234567890123", "9000000000000", "10234567890123");
ASSERT_ADD("1234567890123", "8867901223000", "10102469113123");
ASSERT_ADD("1234567890123", "8000000000000", " 9234567890123");
ASSERT_ADD("1377083362513770833626", "1585054852315850548524", "2962138214829621382150"); ASSERT_SUB("10012345678890", "1", "10012345678889");
ASSERT_SUB("1", "10012345678890", "-10012345678889");
ASSERT_SUB("10012345678890", "10012345678891", "-1");
ASSERT_SUB("10012345678890", "10012345686945", "-8055");
ASSERT_SUB("1000000000000", "999999999999", "1");
}

考虑到语言内置的运算效率应该更高,因此在不可能产生溢出时尽量选用内置运算。CalcOperation()函数便采用这一思路:

void CalcOperation(MATH_OPER *mathOper, char *resBuf, unsigned int resbufLen) {
unsigned int leftLen = strlen(mathOper->leftVal);
unsigned int rightLen = strlen(mathOper->rightVal); switch(mathOper->operator) {
case '+':
if(leftLen <= ADD_THRES && rightLen <= ADD_THRES)
snprintf(resBuf, resbufLen, "%d",
atoi(mathOper->leftVal) + atoi(mathOper->rightVal));
else
Addition(mathOper->leftVal, mathOper->rightVal, resBuf, resbufLen);
break;
case '-':
if(leftLen <= OTH_THRES && rightLen <= OTH_THRES)
snprintf(resBuf, resbufLen, "%d",
atoi(mathOper->leftVal) - atoi(mathOper->rightVal));
else
Subtraction(mathOper->leftVal, mathOper->rightVal, resBuf, resbufLen);
break;
case '*':
if(leftLen <= MUL_THRES && rightLen <= MUL_THRES)
snprintf(resBuf, resbufLen, "%d",
atoi(mathOper->leftVal) * atoi(mathOper->rightVal));
else
break; //Multiplication: product = multiplier * multiplicand
break;
case '/':
if(leftLen <= OTH_THRES && rightLen <= OTH_THRES)
snprintf(resBuf, resbufLen, "%d",
atoi(mathOper->leftVal) / atoi(mathOper->rightVal));
else
break; //Division: quotient = dividend / divisor
break;
default:
break;
} return;
}

注意,大整数的乘法和除法运算尚未实现,因此相应代码分支直接返回。

最后,完成入口函数:

int main(void) {
VerifyOperation(); char leftVal[100] = {0}, rightVal[100] = {0}, operator='+';
char resBuf[1000] = {0}; //As you see, basically any key can quit:)
printf("Enter math expression(press q to quit): ");
while(scanf(" %[0-9] %[+-*/] %[0-9]", leftVal, &operator, rightVal) == 3) {
MATH_OPER mathOper = {leftVal, rightVal, operator};
memset(resBuf, 0, sizeof(resBuf));
CalcOperation(&mathOper, resBuf, sizeof(resBuf));
printf("%s %c %s = %s\n", leftVal, operator, rightVal, resBuf);
printf("Enter math expression(press q to quit): ");
}
return 0;
}

上述代码中,scanf()函数的格式化字符串风格类似正则表达式。其详细介绍参见《sscanf的字符串格式化用法》一文。

三. 效果验证

将上节代码存为BigIntOper.c文件。测试结果如下:

[wangxiaoyuan_@localhost ~]$ gcc -Wall -o BigIntOper BigIntOper.c
[wangxiaoyuan_@localhost ~]$ ./BigIntOper
Enter math expression(press q to quit): 100+901
100 + 901 = 1001
Enter math expression(press q to quit): 100-9
100 - 9 = 91
Enter math expression(press q to quit): 1234567890123 + 8867901223000
1234567890123 + 8867901223000 = 10102469113123
Enter math expression(press q to quit): 1377083362513770833626 - 1585054852315850548524
1377083362513770833626 - 1585054852315850548524 = -207971489802079714898
Enter math expression(press q to quit): q
[wangxiaoyuan_@localhost ~]$

通过内部测试用例和外部人工校验,可知运算结果正确无误。

大整数加减运算的C语言实现的更多相关文章

  1. C语言中指针变量的加减运算

    1.指针变量中存放的是地址值,也就是一个数字地址,例如某指针变量中的值是0x20000000,表示表示此指针变量存放的是内存中位于0x20000000地方的内存地址.指针变量可以加减,但是只能与整型数 ...

  2. C语言中指针的加减运算

    参考文章,值得一看 char arr[3]; printf("arr:\n%d\n%d\n%d\n", arr, arr + 1, arr + 2); char *parr[3]; ...

  3. [Swift]LeetCode592. 分数加减运算 | Fraction Addition and Subtraction

    Given a string representing an expression of fraction addition and subtraction, you need to return t ...

  4. Leetcode 592.分数加减运算

    分数加减运算 给定一个表示分数加减运算表达式的字符串,你需要返回一个字符串形式的计算结果. 这个结果应该是不可约分的分数,即最简分数. 如果最终结果是一个整数,例如 2,你需要将它转换成分数形式,其分 ...

  5. Java实现 LeetCode 592 分数加减运算(纯体力活)

    592. 分数加减运算 给定一个表示分数加减运算表达式的字符串,你需要返回一个字符串形式的计算结果. 这个结果应该是不可约分的分数,即最简分数. 如果最终结果是一个整数,例如 2,你需要将它转换成分数 ...

  6. velocity加减运算注意格式 ,加减号的左右都要有空格

    velocity加减运算注意格式 ,加减号的左右都要有空格 #set( $left= $!biz.value - $vMUtils.getReturnMoney($!biz.billBuy) )

  7. Problem B: 大整数的加法运算

    Problem B: 大整数的加法运算 Time Limit: 1 Sec  Memory Limit: 128 MBSubmit: 112  Solved: 57[Submit][Status][W ...

  8. Linux中日期的加减运算

    Linux中日期的加减运算 目录 在显示方面 在设定时间方面 时间的加减 正文 date命令本身提供了日期的加减运算. date 可以用来显示或设定系统的日期与时间. 回到顶部 在显示方面 使用者可以 ...

  9. void *指针的加减运算

    1.手工写了一个程序验证void *指针加减运算移动几个字节: //本程序验证空类型指针减1移动几个字节 #include <stdio.h> int main(int argc, cha ...

随机推荐

  1. Java Socket基本使用

    首先 编写Client程序: import java.io.IOException; import java.net.Socket; import java.util.Scanner; public ...

  2. PAT基础6-8

    6-8 简单阶乘计算 (10 分) 本题要求实现一个计算非负整数阶乘的简单函数. 函数接口定义: int Factorial( const int N ); 其中N是用户传入的参数,其值不超过12.如 ...

  3. 深入理解JVM(1)——JVM内存模型

    Java虚拟机的内存空间分为五个部分,分别是: 程序计数器: Java虚拟机栈 本地方法栈 堆 方法区 接下来对这五部分分别进行详细的介绍 1.程序计数器: a)什么是程序计数器:程序计数器是内存中的 ...

  4. PHP06

    PHP06 1. 2.可视化工具navicat: 1)查询 : select 字段名1,字段名2- from 表名; 对于可能与关键词重名的名称,建议使用反引号`括起来 可用*通配符代替字段名 sel ...

  5. IT职业后半段发展问题

    忆: 八年前,当我结束第二份工作,寻求第三份工作的时候,我就有了一个疑惑,IT职场上45岁以上或是50岁以上的人去哪了,我去请教以前的老领导,他告诉我有一些转行了,有一些他也不清楚,我的老领导也就比我 ...

  6. MyEclipse 2015 SVN 安装

    SVN的在线安装 1.打开MyEclipse,找到顶部菜单栏 Help(帮助)-Install from Site…(从网站安装),如下图 2. 点击Install from Site…后会出现让你选 ...

  7. 卷积的三种模式:full, same, valid

    通常用外部api进行卷积的时候,会面临mode选择. 本文清晰展示三种模式的不同之处,其实这三种不同模式是对卷积核移动范围的不同限制. 设 image的大小是7x7,filter的大小是3x3 1,f ...

  8. MySQL性能调优的10个方法 - mysql数据库栏目

    摘要: https://edu.aliyun.com/a/29036?spm=5176.11182482.related_article.1.hbeZbF 摘要: MYSQL 应该是最流行了 WEB ...

  9. Java程序猿怎样高速理解Kubernetes

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/M2l0ZgSsVc7r69eFdTj/article/details/82892167 https: ...

  10. angular 2 - 006 change detection 脏治检查 - DC

    ANGULAR CHANGE DETECTION EXPLAINED 引发脏治检查有三种方式: Events - click, submit, - XHR - Fetching data from a ...