志愿者招募

题目描述

  申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。布布刚上任就遇到了一个难
题:为即将启动的奥运新项目招募一批短期志愿者。经过估算,这个项目需要N 天才能完成,其中第i 天至少需要
Ai 个人。 布布通过了解得知,一共有M 类志愿者可以招募。其中第i 类可以从第Si 天工作到第Ti 天,招募费用
是每人Ci 元。新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这
并不是他的特长!于是布布找到了你,希望你帮他设计一种最优的招募方案。

输入

  第一行包含两个整数N, M,表示完成项目的天数和可以招募的志愿者的种类。 接下来的一行中包含N 个非负
整数,表示每天至少需要的志愿者人数。 接下来的M 行中每行包含三个整数Si, Ti, Ci,含义如上文所述。为了
方便起见,我们可以认为每类志愿者的数量都是无限多的。

输出

 仅包含一个整数,表示你所设计的最优方案的总费用。

样例输入

3 3
2 3 4
1 2 2
2 3 5
3 3 2

样例输出

14

提示

1 ≤ N ≤ 1000,1 ≤ M ≤ 10000,题目中其他所涉及的数据均 不超过2^31-1

题解个人觉得这篇写得挺好的(其实因为自己也没有完全弄清楚+懒qwqq: 点击我看题解(*/ω\*)

蒟蒻的超慢代码:

 #include<algorithm>
#include<cstdio>
#include<cstring>
#include<queue> const int Maxv = , INF = 0x6ffffff, M = ;
int Head[Maxv], d[Maxv], from[Maxv], cost[Maxv], a[Maxv], s, n, m, t, cnt = ;
bool inq[Maxv];
struct edge{
int from, to, w, c, next;
}e[Maxv << ]; inline int read(){
int x = , f = ;
char c = getchar();
while (c < '' || c > '') {
if (c == '-') {
f = -;
}
c = getchar();
}
while (c >= '' && c <= '') {
x = x * + c - '';
c = getchar();
}
return x * f;
} void Add(int u, int v, int w, int c){
cnt++;
e[cnt].from = u;
e[cnt].to = v;
e[cnt].w = w;
e[cnt].c = c;
e[cnt].next = Head[u];
Head[u] = cnt;
} void Add_Edge(int u, int v, int w, int c){
Add(u, v, w, c);
Add(v, u, , -c);
} bool spfa(){
for (int i = ; i <= t; i++) {
d[i] = INF;
}
memset(inq, false, sizeof(inq));
std::queue<int> Q;
Q.push(s);
d[s] = ;
inq[s] = true;
while (!Q.empty()) {
int u = Q.front();
Q.pop();
inq[u] = false;
for (int i = Head[u]; i; i = e[i].next) {
if (e[i].w > && d[e[i].to] > d[u] + e[i].c) {
d[e[i].to] = d[u] + e[i].c;
from[e[i].to] = i;
if (!inq[e[i].to]) {
Q.push(e[i].to);
inq[e[i].to] = true;
}
}
}
}
return d[t] != INF;
} int MCMF(){
int Ans = ;
while (spfa()) {
int x = INF;
for (int i = from[t]; i; i = from[e[i].from]) {
x = std::min(x, e[i].w);
}
Ans += d[t] * x;
for (int i = from[t]; i; i = from[e[i].from]) {
e[i].w -= x;
e[i ^ ].w += x;
}
}
return Ans;
} int main(){
memset(Head, , sizeof(Head));
int x, y, ans;
n = read();
m = read();
s = n + ;
t = s + ;
for (int i = ; i <= n; i++) {
a[i] = read();
}
for (int i = ; i <= m; i++) {
x = read();
y = read();
cost[i] = read();
Add_Edge(x, y + , INF, cost[i]);
}
a[] = a[n + ] = ;
for (int i = ; i <= n + ; i++) {
int tmp = a[i] - a[i - ];
if (tmp >= ) {
Add_Edge(s, i, tmp, );
}
else {
Add_Edge(i, t, -tmp, );
}
}
for (int i = ; i <= n; i++) {
Add_Edge(i + , i, INF, );
}
printf("%d\n", MCMF());
return ;
}

[费用流][NOI2008]志愿者招募的更多相关文章

  1. BZOJ 1061: [Noi2008]志愿者招募 费用流

    1061: [Noi2008]志愿者招募 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1061 Description 申奥成功后,布布 ...

  2. 【费用流】BZOJ1061: [Noi2008]志愿者招募(这题超好)

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 5291  Solved: 3173[Submit][Stat ...

  3. 【费用流】NOI2008志愿者招募

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 5171  Solved: 3089[Submit][Stat ...

  4. 线性规划||网络流(费用流):COGS 288. [NOI2008] 志愿者招募

    [NOI2008] 志愿者招募 输入文件:employee.in   输出文件:employee.out   简单对比 时间限制:2 s   内存限制:512 MB [问题描述] 申奥成功后,布布经过 ...

  5. BZOJ 1061: [Noi2008]志愿者招募

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 4064  Solved: 2476[Submit][Stat ...

  6. [BZOJ1061][Noi2008]志愿者招募

    [BZOJ1061][Noi2008]志愿者招募 试题描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿 ...

  7. bzoj1061: [Noi2008]志愿者招募

    线性规划与费用流.http://www.cnblogs.com/iiyiyi/p/5616080.html.数组范围开错了!!!然后2.31-1=0x7fffffff!=0x7f7f7f7f. 开始以 ...

  8. NOI2008 志愿者招募

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1859  Solved: 1169[Submit][Stat ...

  9. 网络流解线性规划问题 BZOJ1061: [Noi2008]志愿者招募

    线性规划定义: 在给定有限的资源和竞争约束情况下,很多问题都可以表述为最大化或最小化某个目标.如果可以把目标指定为某些变量的线性函数,而且如果可以将资源约束指定为这些变量的等式或不等式,则得到了一个线 ...

随机推荐

  1. pj2--图书管理系统

    这一次做得是图书管理系统. 下面是功能框图 下面是流程图 实际在做这个项目的时候根据相应的实际情况对功能流程等等做了一些小小的改变. 下面是一些值得记一笔的地方. 1.借用系统自带的导航控件(Bind ...

  2. time&datetime

    关于time模块的代码部分 1 #_*_coding:utf-8_*_ 2 __author__ = 'Alex Li' 3 4 import time 5 6 7 # print(time.cloc ...

  3. android 使用Retrofit2 RxJava 文件上传

    private static void upload(final Context context, final int type, File logFile) { Map<String, Req ...

  4. Quartz入门及简单实现

    Quartz简介 Quartz是一个功能丰富的开源作业调度库,可以集成到几乎任何Java应用程序中 - 从最小的独立应用程序到最大的电子商务系统.Quartz可以用来创建执行数十,数百乃至数万个作业的 ...

  5. servlet cdi注入

    @WebServlet("/cdiservlet")//url映射,即@WebServlet告诉容器,如果请求的URL是"/cdiservlet",则由NewS ...

  6. ---dd-wrt memo

    http://blog.csdn.net/fyh2003/article/details/44458657http://blog.csdn.net/u010189241/article/details ...

  7. byobu 禁止窗口名称随目录变化

    It looks like the config set-window-option -g automatic-rename off doesn't work. When I added the fo ...

  8. [译]与TensorFlow的第一次接触(三)之聚类

    转自 [译]与TensorFlow的第一次接触(三)之聚类 2016.08.09 16:58* 字数 4316 阅读 7916评论 5喜欢 18 前一章节中介绍的线性回归是一种监督学习算法,我们使用数 ...

  9. MYSQL性能优化(3)

    优化数据库对象 1.优化表的数据类型 select * from tbl1 procedure analyse(16,256) ,会输出优化建议,结合情况优化 2.拆分表(仅Myisam) 2.1 纵 ...

  10. js原型继承四步曲

    <sctript> //1.创建父类 function Parent(){ this.name = name; } Parent.prototype.age = 20; //2.创建子类 ...