北上广深/拔山盖世算法。

yaT+b = z mod p

p为质数,Hash表存b,枚举a,复杂度p0.5

记得特判y = 0的情况。

 inline void solve3() {
Hash::clear();
//mp.clear();
scanf("%lld%lld%lld", &Y, &Z, &MO);
Z %= MO;
Y %= MO;
/// BSGS
if(Y == ) {
if(!Z) printf("1\n");
else printf("Orz, I cannot find x!\n");
return;
}
int T = sqrt(MO);
LL x = , y = ;
for(int i = ; i < T; i++) {
Hash::insert(x, i);
//mp[x] = i;
x = x * Y % MO;
}
x = qpow(x, MO - ); /// x = 1 / (Y ^ T)
for(int i = ; i <= MO / T; i++) {
int t = Hash::find(Z * y % MO);
if(t != -) {
printf("%lld\n", 1ll * i * T + t);
return;
}
y = y * x % MO;
}
printf("Orz, I cannot find x!\n");
return;
}

模板

BSGS的更多相关文章

  1. 【POJ 3243】Clever Y 拓展BSGS

    调了一周,我真制杖,,, 各种初始化没有设为1,,,我当时到底在想什么??? 拓展BSGS,这是zky学长讲课的课件截屏: 是不是简单易懂.PS:聪哥说“拓展BSGS是偏题,省选不会考,信我没错”,那 ...

  2. 【codevs 1565】【SDOI 2011】计算器 快速幂+拓展欧几里得+BSGS算法

    BSGS算法是meet in the middle思想的一种应用,参考Yveh的博客我学会了BSGS的模版和hash表模板,,, 现在才会hash是不是太弱了,,, #include<cmath ...

  3. 【BZOJ-3122】随机数生成器 BSGS

    3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1362  Solved: 531[Submit][Sta ...

  4. BSGS[bzoj2242][bzoj3122]

    数论题. 操作一:直接快速幂就好了. 操作二:我用了exgcd,shy和lyz都喜欢欧拉函数...QAQ最后这块还写错了. 对于ax+by=gcd(a,b)的形式,我们可以把他们变成y'x+p'y=1 ...

  5. 【BZOJ2242】【SDoi2011】计算器 快速幂+EXGCD+BSGS

    Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...

  6. BZOJ-2242 计算器 快速幂+拓展欧几里得+BSGS(数论三合一)

    污污污污 2242: [SDOI2011]计算器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2312 Solved: 917 [Submit][S ...

  7. bzoj 1467: Pku3243 clever Y 扩展BSGS

    1467: Pku3243 clever Y Time Limit: 4 Sec  Memory Limit: 64 MB[Submit][Status][Discuss] Description 小 ...

  8. BSGS模版 a^x=b ( mod c)

    kuangbin的BSGS: c为素数: #define MOD 76543 int hs[MOD],head[MOD],next[MOD],id[MOD],top; void insert(int ...

  9. bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...

  10. 【poj3358】消因子+BSGS 或 消因子+欧拉定理 两种方法

    题意:给你一个分数,求它在二进制下的循环节的长度,还有第一个循环节从哪一位开始. For example, x = 1/10 = 0.0001100110011(00110011)w and 0001 ...

随机推荐

  1. Facebook React 和 Web Components(Polymer)对比优势和劣势

    目录结构 译者前言 Native vs. Compiled 原生语言对决预编译语言 Internal vs. External DSLs 内部与外部 DSLs 的对决 Types of DSLs - ...

  2. Nginx---应用场景小结

    Nginx介绍   Nginx一是一款轻量级的.高性能的HTTP.反向代理服务器,具有很高的稳定性.支持热部署.模块扩展也非常容易.Nginx采取了分阶段资源分配技术,处理静态文件和无缓存的反向代理加 ...

  3. Oracle_安装问题

    [INS-07003] 访问 BeanStore 时出现意外错误   oracle安装时出现以下问题: 原因:未配置环境变量CLASSPASH 解决方法:新增系统变量,在我的电脑上右击-属性-高级系统 ...

  4. win10系统安装web3js的正确方法(2)

    信渤网络科技是一家基于互联网信息服务的区块链技术公司,专业提供区块链技术培训,智能合约定制开发,文字图片数据存证上链等服务,为相关企业提供区块链应用落地项目的技术方案 崇尚代码即法律,做一个智能合约开 ...

  5. java注解XML

    用的是jdk自带的javax.xml.bind.JAXBContext将对象和xml字符串进行相互转换. 比较常用的几个: @XmlRootElement:根节点 @XmlAttribute:该属性作 ...

  6. 读《移山之道-VSTS软件开发指南》

    首先,我选择<移山之道>有几个原因.第一,书的名字给我一种新鲜感,而不是像另外两本书那么平常:第二,作者邹欣是老师推荐的,看一看他的书或许能让我发现老师对他推崇备至的原因,而实际上,读完这 ...

  7. Beta阶段爬取数目预估

    预计于12月29号能进行Beta版本发布. Beta阶段我们的爬取动作应该更有针对性,在爬取期间如若数据处理小组有需求,会优先爬取数据处理小组提供的种子链接.预估在项目展示之前能够爬取的数目: 普通网 ...

  8. 【实践报告】Linux实践四

    Linux内核分析 实践四——ELF文件格式分析 一.概述 1.ELF全称Executable and Linkable Format,可执行连接格式,ELF格式的文件用于存储Linux程序.ELF文 ...

  9. NFV论文集(一)

    一 文章名称:Throughput Maximization and Resource Optimization in NFV-Enabled Networks 发表时间:2017 期刊来源:ICC: ...

  10. Microsoft Orleans构建高并发、分布式的大型应用程序框架

    Microsoft Orleans 在.net用简单方法构建高并发.分布式的大型应用程序框架. 原文:http://dotnet.github.io/orleans/ 在线文档:http://dotn ...