题目大意:给定一个 N 个顶点,M 条边的无向图,求从起点到终点恰好经过 K 个点的最短路。

题解:设 \(d[1][i][j]\) 表示恰好经过一条边 i,j 两点的最短路,那么有 \(d[r+m][i][j]=min\{d[r][i][k]+d[m][k][j] \}\),等价于矩阵乘法。

这道题 K 很大,可以用快速幂加速矩阵乘法。

代码如下

#include <cstdio>
#include <algorithm>
#include <memory.h>
using namespace std;
const int maxn=101; int n,t,st,ed,tot,v[1010]; struct matrix{
int dat[maxn][maxn];
matrix(){memset(dat,0x3f,sizeof(dat));}
inline int* operator[](int i){return dat[i];}
friend matrix operator*(matrix& x,matrix& y){
matrix z;
for(int i=1;i<=tot;i++)
for(int j=1;j<=tot;j++)
for(int k=1;k<=tot;k++)
z[i][j]=min(z[i][j],x[i][k]+y[k][j]);
return z;
}
}d,ans; void read_and_parse(){
scanf("%d%d%d%d",&n,&t,&st,&ed);
for(int i=1,from,to,w;i<=t;i++){
scanf("%d%d%d",&w,&from,&to);
if(!v[from])v[from]=++tot;
if(!v[to])v[to]=++tot;
from=v[from],to=v[to];
d[from][to]=d[to][from]=min(d[from][to],w);
}
st=v[st],ed=v[ed];
} void solve(){
ans=d,--n;
for(;n;d=d*d,n>>=1)if(n&1)ans=ans*d;
printf("%d\n",ans[st][ed]);
} int main(){
read_and_parse();
solve();
return 0;
}

【POJ3613】Cow Relays 离散化+倍增+矩阵乘法的更多相关文章

  1. 洛谷P2886 [USACO07NOV]Cow Relays G (矩阵乘法与路径问题)

    本题就是求两点间只经过n条边的最短路径,定义广义的矩阵乘法,就是把普通的矩阵乘法从求和改成了取最小值,把内部相乘改成了相加. 代码包含三个内容:广义矩阵乘法,矩阵快速幂,离散化: 1 #include ...

  2. POJ 3613 [ Cow Relays ] DP,矩阵乘法

    解题思路 首先考虑最暴力的做法.对于每一步,我们都可以枚举每一条边,然后更新每两点之间经过\(k\)条边的最短路径.但是这样复杂度无法接受,我们考虑优化. 由于点数较少(其实最多只有\(200\)个点 ...

  3. 倍增&矩阵乘法 专题复习

    倍增&矩阵乘法 专题复习 PreWords 这两个基础算法我就不多说啦,但是还是要介绍一下" 广义矩阵 "乘法 其实就是把矩阵换成取\(max\),然后都一样... 据神仙 ...

  4. 2021.11.03 P2886 [USACO07NOV]Cow Relays G(矩阵+floyed)

    2021.11.03 P2886 [USACO07NOV]Cow Relays G(矩阵+floyed) [P2886 USACO07NOV]Cow Relays G - 洛谷 | 计算机科学教育新生 ...

  5. 【loj2325】「清华集训 2017」小Y和恐怖的奴隶主 概率dp+倍增+矩阵乘法

    题目描述 你有一个m点生命值的奴隶主,奴隶主受伤未死且当前随从数目不超过k则再召唤一个m点生命值的奴隶主. T次询问,每次询问如果如果对面下出一个n点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输 ...

  6. poj3613:Cow Relays(倍增优化+矩阵乘法floyd+快速幂)

    Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7825   Accepted: 3068 Descri ...

  7. POJ3613 Cow Relays [矩阵乘法 floyd类似]

    Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7335   Accepted: 2878 Descri ...

  8. 【POJ3613 Cow Relays】(广义矩阵乘法)

    题目链接 先离散化,假设有\(P\)个点 定义矩阵\(A_{ij}\)表示\(i\)到\(j\)只经过一条边的最短路,\[{(A^{a+b})_{ij}=\min_{1\le k\le p} \{ ( ...

  9. 疯子的算法总结(九) 图论中的矩阵应用 Part 1+POJ3613 Cow Relays

    图的存储有邻接矩阵,那么他就具备一些矩阵的性质,设有一个图的demo[100][100];那么demo[M][N]就是M—>N的距离,若经过一次松弛操作demo[M][N]=demo[M][K] ...

随机推荐

  1. 开发CMDB系统

    背景: 在现网环境中服务器多了每天服务器的配置 情况我们很难记住,当某台服务器硬件配置变化后可以第一时间了解,某台服务器出现问题时可以快速定位机架位置,之前都是excel文档,要查某项数据时极不方便. ...

  2. centos7下/etc/rc.local文件里配置的开机启动项不执行的解决办法

    习惯于在/etc/rc.local文件里配置我们需要开机启动的服务,这个在centos6系统下是正常生效的.但是到了centos7系统下,发现/etc/rc.local文件里的开机启动项不执行了!仔细 ...

  3. SpringMVC环境搭建——HelloWorld

    1.新建Maven Web 工程: 2.添加相关的依赖包(Spring MVC.tomcat插件等),具体的pom.xml文件如下 <project xmlns="http://mav ...

  4. Jenkins部署Python项目实战

    一.背景 我们工作中常用Jenkins部署Java代码,因其灵活的插件特性,例如jdk,maven,ant等使得java项目编译后上线部署一气呵成,同样对于脚本语言类型如Python上线部署,利用Je ...

  5. 11.18 Daily Scrum

    这两天开发人员陆续提交了自己开发的部分. 目前所有开发任务都已经完成,剩下的只是测试和整合,做最后的冲刺. 明天的任务: 李承晗:测试与整合

  6. BugPhobia开发篇章:Beta阶段第VIII次Scrum Meeting

    0x01 :Scrum Meeting基本摘要 Beta阶段第八次Scrum Meeting 敏捷开发起始时间 2015/12/22 00:00 A.M. 敏捷开发终止时间 2015/12/22 23 ...

  7. SE Springer小组之《Spring音乐播放器》可行性研究报告五、六

    5 可选择的其他系统方案 曾经考虑过制作闹钟系统,但考虑到闹钟系统在电脑应用中极其不实用,所以此方案未通过. 6 投资及效益分析 6.1支出 本软件只用于完成课程学习要求,不用做商用,无基础设备等支出 ...

  8. Beta之后的想法

    软件工程如果没选实践,单纯在理论课上面对教条化的理论,这些理论都是很有指导意义的,但没有实践课带来的切实的多人团队合作开发项目的实际体会,很难能领会到其中的深意.知行合一,才能发现软件工程里的知识都是 ...

  9. Orchard Core学习一

    Orchard Core学习一 Orchard Core是ASP.NET Core上Orchard CMS的重新开发. Orchard Core由两个不同的目标组成: Orchard核心框架:用于在A ...

  10. 转:为Docker容器设置固定IP实现网络联通(1)——通过Pipework为Docker容器设置

    https://blog.csdn.net/chinagissoft/article/details/51250839 1. 创建并启动一个容器: docker run --cap-add=NET_A ...