洛谷P3195 玩具装箱TOY
题目大意:
有n个数,要将他们分成若干段,每一段的cost定义为: cost=r-l+ΣCk (k∈[r,l]) 该段的最终花费是:(cost-L)^2; 给出L,n,C(1~n),总共的最小花费。
分析:
dp方程极容易想出来: f[i]=max(f[j]+(sum[i]-sum[j]+i-j-1-L)^2) 其中sum[i]表示c(1~i)的和。因为取的这一段数从j+1开始,所以i-j-1(题目中i-j并不是区间长度!没有再加1)
O(n^2)直接挂掉。
因为状态O(n)已经非常不错,无法再优化了。所以考虑能不能优化转移的O(n)。
将表达式展开:
f[i]=f[j]+(sum[i]-sum[j]+i-j-1-L)^2
令a[k]=sum[k]+k;x[k]=a[k]+1+ f[i]=f[j]+(a[i]-x[j])^2
f[i]=f[j]+x[j]^2-2a[i]x[j]+a[i]^2
对于给定的i,a[i]^2是一个定值,所以当做常数先不用管,但是记得最后加上!
令y[k]=f[k]+x[k]^2; f[i]=y[j]-2a[i]x[j]
移项: y[j]=2a[i]x[j]+f[i]
对于给定的i,我们需要循环所有的j。 对于一个j,我们已经知道了x[j],y[j]。 将它看作一个点,所有的j构成一个点集,横坐标x[j],纵坐标y[j]
而对于给定的i,2a[i]是一个定值,看做斜率,而目标f[i]则是截距,所以要在j的点集之中找到一个点使得这条直线截距最小,本质是将y=2a[i]x的直线平移。
可以发现这些最优解的点必定在边界上。并且发现,斜率是单增的,而x一定也是单增的。所以可以维护一个左上下凸壳。
因为斜率单增,所以若一个点此时不是最优解,那么以后一定也不是最优解,可以直接从头pass掉;每次新增一个点,都要保证这是一个凸包,通过斜率要来从尾pass掉。
所以可以用单调队列维护!单调,在这里是指队列中的元素,每相邻两个元素所代表的点连成的线,其斜率是单调递增的。因为斜率都是正数,所以也就是画出来是一个左上凸包。
注意,队列中至少要有一个0号元素不能出队!这里第一个空位置是有意义的。否则就不存在线和斜率了。所以手写队列时,开始hd=tl=0,while判断中hd<tl 保证一定至少有一个元素,并且这个元素不会被其他元素替代。详见代码。
具体步骤:
1.前缀和预处理
2.循环i,先删除队首,再更新答案,再更新队列。
3.输出f[n] GAME OVER
代码:
#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=+;
int n,L;
long long f[N];
long long sum[N];
int q[N],hd,tl;
long long a(int i)
{
return sum[i]+i;
}
long long x(int i)
{
return sum[i]+i+L+;
}
long long y(int i)
{
return x(i)*x(i)+f[i];
}
double slope(int a,int b)
{
return ((double)y(b)-y(a))/((double)x(b)-x(a));
}//一堆函数
int t;
int main()
{
scanf("%d%d",&n,&L);
for(int i=;i<=n;i++)
{
scanf("%d",&t);
sum[i]=sum[i-]+t;
}
hd=,tl=;
for(int i=;i<=n;i++)
{
while(hd<tl&&slope(q[hd],q[hd+])<*a(i)) hd++;//删除
f[i]=y(q[hd])-*a(i)*x(q[hd])+a(i)*a(i);
while(hd<tl&&slope(q[tl-],q[tl])>slope(q[tl-],i)) tl--;
q[++tl]=i;//更新
}
printf("%lld",f[n]);
return ;
}
总结:
1.一个题能用斜率优化,必然能出现y=kx+b 线性形式,其中k是定值,x,y构成点集,b是目标值。
2.一个凸包能用单调队列优化的条件应该满足:
(1)查询的斜率单调 (2)插入的点横坐标有单调性 (否则要用平衡树、set)
洛谷P3195 玩具装箱TOY的更多相关文章
- 洛谷P3195 玩具装箱
P3195 [HNOI2008]玩具装箱TOY 第一道斜率优化题. 首先一个基本的状态转移方程是 要使f[i]最小,即b最小. 对于每个j,可以表示为一个点. 然后我们取固定斜率时截距最小的即可,高中 ...
- 洛谷P3195||bzoj1010 [HNOI2008]玩具装箱TOY
洛谷P3195 bzoj1010 设s数组为C的前缀和 首先$ans_i=min_{j<i}\{ans_j+(i-j-1+s_i-s_j-L)^2\}$ (斜率优化dp)参考(复读)https: ...
- 斜率优化dp学习笔记 洛谷P3915[HNOI2008]玩具装箱toy
本文为原创??? 作者写这篇文章的时候刚刚初一毕业…… 如有错误请各位大佬指正 从例题入手 洛谷P3915[HNOI2008]玩具装箱toy Step0:读题 Q:暴力? 如果您学习过dp 不难推出d ...
- P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)
P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...
- [luogu P3195] [HNOI2008]玩具装箱TOY
[luogu P3195] [HNOI2008]玩具装箱TOY 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆, ...
- BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 9812 Solved: 3978[Submit][St ...
- 【BZOJ-1010】玩具装箱toy DP + 斜率优化
1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8432 Solved: 3338[Submit][St ...
- BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP
1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...
- 【BZOJ】【1010】【HNOI2008】玩具装箱Toy
DP/斜率优化 根据题目描述很容易列出动规方程:$$ f[i]=min\{ f[j]+(s[i]-s[j]+i-j-1-L)^2 \}$$ 其中 $$s[i]=\sum_{k=1}^{i} c[k] ...
随机推荐
- Roslyn入门(一)-C#语法分析
演示环境 Visual Studio 2017 .NET Compiler Platform SDK 简介 今天,Visual Basic和C#编译器是黑盒子:输入文本然后输出字节,编译管道的中间阶段 ...
- REST-framework快速构建API--生成Swagger接口文档
一.Swagger概述 1.引言 当接口开发完成,紧接着需要编写接口文档.传统的接口文档使用Word编写,or一些接口文档管理平台进行编写,但此类接口文档维护更新比较麻烦,每次接口有变更,需要手动修改 ...
- 【转载】固态硬盘的S.M.A.R.T详解
文章来源于: 瑞耐斯存储技术 兵哥写这篇文章,是因为在测试的过程中看到了 SSD存在偶尔有性能下降的情况,经分析为S.M.A.R.T命令所导致,虽然这种情况看似不严重,但如果应用在诸如数据采集等关键性 ...
- Object-Oriented(二)原型对象
自用备忘笔记 1. 理解原型对象 只要创建函数,函数上就会创建一个 prototype 属性指向函数的原型对象. function Person() {} Person.prototype //指向该 ...
- Python零基础入门(安装步骤,验证方式, 简单操作)
本篇文章适合新人小白初步了解Python,涵盖Python的介绍.安装以及简单的基础操作. 1.Python简介 Python 是一个高层次的结合了解释性.编译性.互动性和面向对象的脚本语言.它的设 ...
- centos6下ActiveMQ+Zookeeper消息中间件集群部署记录
由于最近一个项目并发请求压力比较大,所以考虑改进架构,引入消息中间件集群作为一个缓冲消息队列,具体需求:1)将大量的WebService请求报文发送到mq集群之中,并保持消息先后顺序2)保证每个消息的 ...
- db2修改最大连接数
查看当前连接数,sample为数据库名db2 list applications for db sample db2 list applications for db sample show deta ...
- Daily scrum 12.24
平安夜闲得想来一遍scrum,添加了之前ui组的数据库问题修复任务. 其实是之前忘记在任务中添加了.现在基本修复完成. Member Today’s task 林豪森 与学霸其他小组交流,处理整合问题 ...
- SCRUM 12.19
我们的爬虫依然存在一些问题,我们决定暂时将大家的工作重心放在爬虫上. 新的任务分配如下 成员 原本任务 新任务 彭林江 落实API 研究美团爬虫 郝倩 研究遍历美团数据方法 研究遍历美团数据方法 牛强 ...
- 运用PDO存储将图片、音频文件存入数据库
在数据库中创建表格的时候,有一个字段为image,用来保存图片,那么其类型就是blob,关于blob,百度百科是这样描述的 BLOB (binary large object),二进制大对象,是一个可 ...