题目大意:

有n个数,要将他们分成若干段,每一段的cost定义为: cost=r-l+ΣCk (k∈[r,l]) 该段的最终花费是:(cost-L)^2; 给出L,n,C(1~n),总共的最小花费。

分析:

dp方程极容易想出来: f[i]=max(f[j]+(sum[i]-sum[j]+i-j-1-L)^2) 其中sum[i]表示c(1~i)的和。因为取的这一段数从j+1开始,所以i-j-1(题目中i-j并不是区间长度!没有再加1)

O(n^2)直接挂掉。

因为状态O(n)已经非常不错,无法再优化了。所以考虑能不能优化转移的O(n)。

将表达式展开:

f[i]=f[j]+(sum[i]-sum[j]+i-j-1-L)^2

令a[k]=sum[k]+k;x[k]=a[k]+1+ f[i]=f[j]+(a[i]-x[j])^2

f[i]=f[j]+x[j]^2-2a[i]x[j]+a[i]^2

对于给定的i,a[i]^2是一个定值,所以当做常数先不用管,但是记得最后加上!

令y[k]=f[k]+x[k]^2; f[i]=y[j]-2a[i]x[j]

移项: y[j]=2a[i]x[j]+f[i]

对于给定的i,我们需要循环所有的j。 对于一个j,我们已经知道了x[j],y[j]。 将它看作一个点,所有的j构成一个点集,横坐标x[j],纵坐标y[j]

而对于给定的i,2a[i]是一个定值,看做斜率,而目标f[i]则是截距,所以要在j的点集之中找到一个点使得这条直线截距最小,本质是将y=2a[i]x的直线平移。

可以发现这些最优解的点必定在边界上。并且发现,斜率是单增的,而x一定也是单增的。所以可以维护一个左上下凸壳。

因为斜率单增,所以若一个点此时不是最优解,那么以后一定也不是最优解,可以直接从头pass掉;每次新增一个点,都要保证这是一个凸包,通过斜率要来从尾pass掉。

所以可以用单调队列维护!单调,在这里是指队列中的元素,每相邻两个元素所代表的点连成的线,其斜率是单调递增的。因为斜率都是正数,所以也就是画出来是一个左上凸包。

注意,队列中至少要有一个0号元素不能出队!这里第一个空位置是有意义的。否则就不存在线和斜率了。所以手写队列时,开始hd=tl=0,while判断中hd<tl 保证一定至少有一个元素,并且这个元素不会被其他元素替代。详见代码。

具体步骤:

1.前缀和预处理

2.循环i,先删除队首,再更新答案,再更新队列。

3.输出f[n] GAME OVER

代码:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int N=+;
int n,L;
long long f[N];
long long sum[N];
int q[N],hd,tl;
long long a(int i)
{
return sum[i]+i;
}
long long x(int i)
{
return sum[i]+i+L+;
}
long long y(int i)
{
return x(i)*x(i)+f[i];
}
double slope(int a,int b)
{
return ((double)y(b)-y(a))/((double)x(b)-x(a));
}//一堆函数
int t;
int main()
{
scanf("%d%d",&n,&L);
for(int i=;i<=n;i++)
{
scanf("%d",&t);
sum[i]=sum[i-]+t;
}
hd=,tl=;
for(int i=;i<=n;i++)
{
while(hd<tl&&slope(q[hd],q[hd+])<*a(i)) hd++;//删除
f[i]=y(q[hd])-*a(i)*x(q[hd])+a(i)*a(i);
while(hd<tl&&slope(q[tl-],q[tl])>slope(q[tl-],i)) tl--;
q[++tl]=i;//更新
}
printf("%lld",f[n]);
return ;
}

总结:

1.一个题能用斜率优化,必然能出现y=kx+b 线性形式,其中k是定值,x,y构成点集,b是目标值。

2.一个凸包能用单调队列优化的条件应该满足:

(1)查询的斜率单调 (2)插入的点横坐标有单调性 (否则要用平衡树、set)

洛谷P3195 玩具装箱TOY的更多相关文章

  1. 洛谷P3195 玩具装箱

    P3195 [HNOI2008]玩具装箱TOY 第一道斜率优化题. 首先一个基本的状态转移方程是 要使f[i]最小,即b最小. 对于每个j,可以表示为一个点. 然后我们取固定斜率时截距最小的即可,高中 ...

  2. 洛谷P3195||bzoj1010 [HNOI2008]玩具装箱TOY

    洛谷P3195 bzoj1010 设s数组为C的前缀和 首先$ans_i=min_{j<i}\{ans_j+(i-j-1+s_i-s_j-L)^2\}$ (斜率优化dp)参考(复读)https: ...

  3. 斜率优化dp学习笔记 洛谷P3915[HNOI2008]玩具装箱toy

    本文为原创??? 作者写这篇文章的时候刚刚初一毕业…… 如有错误请各位大佬指正 从例题入手 洛谷P3915[HNOI2008]玩具装箱toy Step0:读题 Q:暴力? 如果您学习过dp 不难推出d ...

  4. P3195 [HNOI2008]玩具装箱TOY(斜率优化dp)

    P3195 [HNOI2008]玩具装箱TOY 设前缀和为$s[i]$ 那么显然可以得出方程 $f[i]=f[j]+(s[i]-s[j]+i-j-L-1)^{2}$ 换下顺序 $f[i]=f[j]+( ...

  5. [luogu P3195] [HNOI2008]玩具装箱TOY

    [luogu P3195] [HNOI2008]玩具装箱TOY 题目描述 P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆, ...

  6. BZOJ 1010: [HNOI2008]玩具装箱toy [DP 斜率优化]

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 9812  Solved: 3978[Submit][St ...

  7. 【BZOJ-1010】玩具装箱toy DP + 斜率优化

    1010: [HNOI2008]玩具装箱toy Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 8432  Solved: 3338[Submit][St ...

  8. BZOJ 1010: [HNOI2008]玩具装箱toy 斜率优化DP

    1010: [HNOI2008]玩具装箱toy Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再 ...

  9. 【BZOJ】【1010】【HNOI2008】玩具装箱Toy

    DP/斜率优化 根据题目描述很容易列出动规方程:$$ f[i]=min\{ f[j]+(s[i]-s[j]+i-j-1-L)^2 \}$$ 其中 $$s[i]=\sum_{k=1}^{i} c[k] ...

随机推荐

  1. Roslyn入门(一)-C#语法分析

    演示环境 Visual Studio 2017 .NET Compiler Platform SDK 简介 今天,Visual Basic和C#编译器是黑盒子:输入文本然后输出字节,编译管道的中间阶段 ...

  2. REST-framework快速构建API--生成Swagger接口文档

    一.Swagger概述 1.引言 当接口开发完成,紧接着需要编写接口文档.传统的接口文档使用Word编写,or一些接口文档管理平台进行编写,但此类接口文档维护更新比较麻烦,每次接口有变更,需要手动修改 ...

  3. 【转载】固态硬盘的S.M.A.R.T详解

    文章来源于: 瑞耐斯存储技术 兵哥写这篇文章,是因为在测试的过程中看到了 SSD存在偶尔有性能下降的情况,经分析为S.M.A.R.T命令所导致,虽然这种情况看似不严重,但如果应用在诸如数据采集等关键性 ...

  4. Object-Oriented(二)原型对象

    自用备忘笔记 1. 理解原型对象 只要创建函数,函数上就会创建一个 prototype 属性指向函数的原型对象. function Person() {} Person.prototype //指向该 ...

  5. Python零基础入门(安装步骤,验证方式, 简单操作)

    本篇文章适合新人小白初步了解Python,涵盖Python的介绍.安装以及简单的基础操作.  1.Python简介 Python 是一个高层次的结合了解释性.编译性.互动性和面向对象的脚本语言.它的设 ...

  6. centos6下ActiveMQ+Zookeeper消息中间件集群部署记录

    由于最近一个项目并发请求压力比较大,所以考虑改进架构,引入消息中间件集群作为一个缓冲消息队列,具体需求:1)将大量的WebService请求报文发送到mq集群之中,并保持消息先后顺序2)保证每个消息的 ...

  7. db2修改最大连接数

    查看当前连接数,sample为数据库名db2 list applications for db sample db2 list applications for db sample show deta ...

  8. Daily scrum 12.24

    平安夜闲得想来一遍scrum,添加了之前ui组的数据库问题修复任务. 其实是之前忘记在任务中添加了.现在基本修复完成. Member Today’s task 林豪森 与学霸其他小组交流,处理整合问题 ...

  9. SCRUM 12.19

    我们的爬虫依然存在一些问题,我们决定暂时将大家的工作重心放在爬虫上. 新的任务分配如下 成员 原本任务 新任务 彭林江 落实API 研究美团爬虫 郝倩 研究遍历美团数据方法 研究遍历美团数据方法 牛强 ...

  10. 运用PDO存储将图片、音频文件存入数据库

    在数据库中创建表格的时候,有一个字段为image,用来保存图片,那么其类型就是blob,关于blob,百度百科是这样描述的 BLOB (binary large object),二进制大对象,是一个可 ...