HDU 5608 - function
套路题
图片来自:
https://blog.csdn.net/V5ZSQ/article/details/52116285
杜教筛思想,根号递归下去。
先搞出前缀和g(n)=∑f(i)
然后寻求递归。∑g(n/i)=常数
这一步要运用给出的f(i)的关系,干掉f
具体:
向枚举约数转化,不断交换求和,交换统计贡献的部分。通过数学意义变成枚举约数
然后类似杜教筛即可
f的前1000000项,调和级数枚举约数减去贡献
#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define numb (ch^'0')
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
template<class T>il void ot(T x){x/?ot(x/):putchar(x%+'');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) printf("%lld ",a[i]);putchar('\n');} namespace Miracle{
const int mod=1e9+;
const int M=+;
int t,n;
int f[M];
int qm(int x,int y){
int ret=;while(y){
if(y&) ret=(ll)ret*x%mod;x=(ll)x*x%mod;y>>=;
}return ret;
}
int ad(int x,int y){
return x+y>=mod?x+y-mod:x+y;
}
void sieve(int n){
for(reg i=;i<=n;++i) f[i]=(ll)(i-)*(i-)%mod;
for(reg i=;i<=n;++i){
for(reg j=i+i;j<=n;j+=i){
f[j]=ad(f[j],mod-f[i]);
}
}
for(reg i=;i<=n;++i) f[i]=ad(f[i],f[i-]);
}
map<int,int>mp;
int inv6;
int sol(int n){
if(n<=M-) return f[n];
if(mp.find(n)!=mp.end()) return mp[n];
ll ret=(ll)(n-)*n%mod*(*n-)%mod*inv6%mod;
ret=ad(ret,mod-(ll)n*(n-)/%mod);
for(reg i=,x=;i<=n;i=x+){
x=(n/(n/i));
ret=ad(ret,mod-(ll)(x-i+)*sol(n/i)%mod);
}
return mp[n]=ret;
}
int main(){
sieve(M-);
inv6=qm(,mod-);
rd(t);
while(t--){
rd(n);printf("%d\n",sol(n));
}
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2019/3/8 11:16:20
*/
HDU 5608 - function的更多相关文章
- HDU 5608 function [杜教筛]
HDU 5608 function 题意:数论函数满足\(N^2-3N+2=\sum_{d|N} f(d)\),求前缀和 裸题-连卷上\(1\)都告诉你了 预处理\(S(n)\)的话反演一下用枚举倍数 ...
- ●HDU 5608 function
题链: http://acm.hdu.edu.cn/showproblem.php?pid=5608 题解: 莫比乌斯反演,杜教筛 已知$$N^2-3N+2=\sum_{d|N} f(d)$$ 多次询 ...
- [HDU 5608]Function(莫比乌斯反演 + 杜教筛)
题目描述 有N2−3N+2=∑d∣Nf(d)N^2-3N+2=\sum_{d|N} f(d)N2−3N+2=∑d∣Nf(d) 求∑i=1Nf(i)\sum_{i=1}^{N} f(i)∑i=1Nf ...
- HDU 5608 function(莫比乌斯反演 + 杜教筛)题解
题意: 已知\(N^2-3N+2=\sum_{d|N}f(d)\),求\(\sum_{i=1}^nf(i) \mod 1e9+7\),\(n\leq1e9\) 思路: 杜教筛基础题? 很显然这里已经设 ...
- HDU 6038 - Function | 2017 Multi-University Training Contest 1
/* HDU 6038 - Function [ 置换,构图 ] 题意: 给出两组排列 a[], b[] 问 满足 f(i) = b[f(a[i])] 的 f 的数目 分析: 假设 a[] = {2, ...
- 洛谷P1464 Function HDU P1579 Function Run Fun
洛谷P1464 Function HDU P1579 Function Run Fun 题目描述 对于一个递归函数w(a,b,c) 如果a≤0 or b≤0 or c≤0就返回值11. 如果a> ...
- HDU 5875 Function 【倍增】 (2016 ACM/ICPC Asia Regional Dalian Online)
Function Time Limit: 7000/3500 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others)Total ...
- 2017 Multi-University Training Contest - Team 1 1006&&HDU 6038 Function【DFS+数论】
Function Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total ...
- HDU 5875 Function 优先队列+离线
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5875 Function Time Limit: 7000/3500 MS (Java/Others) ...
随机推荐
- Redis+Keepalived高可用环境部署记录
Keepalived 实现VRRP(虚拟路由冗余)协议,从路由级别实现VIP切换,可以完全避免类似heartbeat脑裂问题,可以很好的实现主从.主备.互备方案,尤其是无状态业务,有状态业务就需要额外 ...
- svn代码发版的脚本分享
背景:开发将其代码放到svn里面,如何将修改后存放到svn里的代码发布到线上?简单做法:写个shell脚本,用于代码发版.比如开发的代码存放svn的路径是:svn://112.168.19.120/h ...
- Git常用命令梳理
在日常的Git版本库管理工作中用到了很多操作命令,以下做一梳理: 查看分支列表,带有*的分支表示是当前所在分支 [root@115~~]#git branch 查看分支详细情况 (推荐这种方式) [r ...
- BugPhobia开发终结篇章:Beta阶段第XI次Scrum Meeting
0x01 :Scrum Meeting基本摘要 Beta阶段第十一次Scrum Meeting 敏捷开发起始时间 2015/01/06 00:00 A.M. 敏捷开发终止时间 2016/01/10 0 ...
- .NET 使用 RabbitMQ 图文简介
前言 最近项目要使用RabbitMQ,园里里面已经有很多优秀的文章,Rabbitmq官网也有.net实例.这里我尝试下图文并茂之形式记录下使用的过程. 安装 RabbitMQ是建立在erlang OT ...
- Mybatis源码分析
MyBatis 是支持定制化 SQL.存储过程以及高级映射的优秀的持久层框架.MyBatis 避免了几乎所有的 JDBC 代码和手动设置参数以及获取结果集.MyBatis 可以对配置和原生Map使用简 ...
- [日常工作]GS使用安装盘修改密码后的处理
1. GS服务器端有时候需要修改 9999 的用户密码.但是修改完密码之后有几个注意事项: 一般有两个可以修改注册的地方: 使用setup里面的修改用户密码 修改完密码之后要手工注册一下数据库实例 也 ...
- Java中对域和静态方法的访问不具有多态性
1.将方法调用同方法主体关联起来被称为 2.编译期绑定(静态)是在程序编译阶段就确定了引用对象的类型 3.运行期绑定(动态绑定)是指在执行期间判断所引用对象的实际类型,根据其实际的类型调用其相应的方法 ...
- ubuntu 环境 celery配置全解
继续尝试没有时间弄明白的技术. celery官方文档地址:http://docs.celeryproject.org/en/stable/getting-started/introduction.ht ...
- Delphi学习技巧
我感觉学习最大的诀窍是, 尽快捕捉到设计者(Delphi VCL 的设计者.进而是 Windows 操作系统的设计者)的某些思路, 和大师的思路吻合了, 才能够融汇贯通, 同时从容使用它们的成果. 碰 ...