Django框架(四)
八、Django 模型层(2)
多表操作
创建模型
实例:我们来假定下面这些概念,字段和关系
作者模型:一个作者有姓名和年龄。
作者详细模型:把作者的详情放到详情表,包含生日,手机号,家庭住址等信息。作者详情模型和作者模型之间是一对一的关系(one-to-one)
出版商模型:出版商有名称,所在城市以及email。
书籍模型: 书籍有书名和出版日期,一本书可能会有多个作者,一个作者也可以写多本书,所以作者和书籍的关系就是多对多的关联关系(many-to-many);一本书只应该由一个出版商出版,所以出版商和书籍是一对多关联关系(one-to-many)。
模型建立如下:
from django.db import models # Create your models here. class Author(models.Model):
nid = models.AutoField(primary_key=True)
name=models.CharField( max_length=32)
age=models.IntegerField() # 与AuthorDetail建立一对一的关系
authorDetail=models.OneToOneField(to="AuthorDetail",on_delete=models.CASCADE)
class AuthorDetail(models.Model): nid = models.AutoField(primary_key=True)
birthday=models.DateField()
telephone=models.BigIntegerField()
addr=models.CharField( max_length=64) class Publish(models.Model):
nid = models.AutoField(primary_key=True)
name=models.CharField( max_length=32)
city=models.CharField( max_length=32)
email=models.EmailField() class Book(models.Model): nid = models.AutoField(primary_key=True)
title = models.CharField( max_length=32)
publishDate=models.DateField()
price=models.DecimalField(max_digits=5,decimal_places=2) # 与Publish建立一对多的关系,外键字段建立在多的一方
publish=models.ForeignKey(to="Publish",to_field="nid",on_delete=models.CASCADE)
# 与Author表建立多对多的关系,ManyToManyField可以建在两个模型中的任意一个,自动创建第三张表
authors=models.ManyToManyField(to='Author',)
生成表如下:
注意事项:
- 表的名称
myapp_modelName
,是根据 模型中的元数据自动生成的,也可以覆写为别的名称 id
字段是自动添加的- 对于外键字段,Django 会在字段名上添加"_id" 来创建数据库中的列名
- 这个例子中的
CREATE TABLE
SQL 语句使用PostgreSQL 语法格式,要注意的是Django 会根据settings 中指定的数据库类型来使用相应的SQL 语句。 - 定义好模型之后,你需要告诉Django _使用_这些模型。你要做的就是修改配置文件中的INSTALL_APPSZ中设置,在其中添加
models.py
所在应用的名称。 - 外键字段 ForeignKey 有一个 null=True 的设置(它允许外键接受空值 NULL),你可以赋给它空值 None 。
添加表纪录
操作前先简单的录入一些数据:
publish表:
author表:
authordetail表:
一对多
1
2
3
4
5
6
|
方式 1 : publish_obj = Publish.objects.get(nid = 1 ) book_obj = Book.objects.create(title = "金瓶眉" ,publishDate = "2012-12-12" ,price = 100 ,publish = publish_obj) 方式 2 : book_obj = Book.objects.create(title = "金瓶眉" ,publishDate = "2012-12-12" ,price = 100 ,publish_id = 1 ) |
核心:book_obj.publish与book_obj.publish_id是什么?
多对多
# 当前生成的书籍对象
book_obj=Book.objects.create(title="追风筝的人",price=200,publishDate="2012-11-12",publish_id=1)
# 为书籍绑定的做作者对象
yuan=Author.objects.filter(name="yuan").first() # 在Author表中主键为2的纪录
egon=Author.objects.filter(name="alex").first() # 在Author表中主键为1的纪录 # 绑定多对多关系,即向关系表book_authors中添加纪录
book_obj.authors.add(yuan,egon) # 将某些特定的 model 对象添加到被关联对象集合中。 ======= book_obj.authors.add(*[])
数据库表纪录生成如下:
book表
book_authors表
核心:book_obj.authors.all()是什么?
多对多关系其它常用API:
1
2
3
|
book_obj.authors.remove() # 将某个特定的对象从被关联对象集合中去除。 ====== book_obj.authors.remove(*[]) book_obj.authors.clear() #清空被关联对象集合 book_obj.authors. set () #先清空再设置 |
基于对象的跨表查询
一对多查询(Publish 与 Book)
正向查询(按字段:publish):
1
2
3
4
|
# 查询主键为1的书籍的出版社所在的城市 book_obj = Book.objects. filter (pk = 1 ).first() # book_obj.publish 是主键为1的书籍对象关联的出版社对象 print (book_obj.publish.city) |
反向查询(按表名:book_set):
1
2
3
4
5
|
publish = Publish.objects.get(name = "苹果出版社" ) #publish.book_set.all() : 与苹果出版社关联的所有书籍对象集合 book_list = publish.book_set. all () for book_obj in book_list: print (book_obj.title) |
一对一查询(Author 与 AuthorDetail)
正向查询(按字段:authorDetail):
1
2
|
egon = Author.objects. filter (name = "egon" ).first() print (egon.authorDetail.telephone) |
反向查询(按表名:author):
1
2
3
4
5
|
# 查询所有住址在北京的作者的姓名 authorDetail_list = AuthorDetail.objects. filter (addr = "beijing" ) for obj in authorDetail_list: print (obj.author.name) |
多对多查询 (Author 与 Book)
正向查询(按字段:authors):
1
2
3
4
5
6
|
# 金瓶眉所有作者的名字以及手机号 book_obj = Book.objects. filter (title = "金瓶眉" ).first() authors = book_obj.authors. all () for author_obj in authors: print (author_obj.name,author_obj.authorDetail.telephone) |
反向查询(按表名:book_set):
1
2
3
4
5
6
|
# 查询egon出过的所有书籍的名字 author_obj = Author.objects.get(name = "egon" ) book_list = author_obj.book_set. all () #与egon作者相关的所有书籍 for book_obj in book_list: print (book_obj.title) |
注意:
你可以通过在 ForeignKey() 和ManyToManyField的定义中设置 related_name 的值来覆写 FOO_set 的名称。例如,如果 Article model 中做一下更改:
1
|
publish = ForeignKey(Book, related_name = 'bookList' ) |
那么接下来就会如我们看到这般:
1
2
3
4
|
# 查询 人民出版社出版过的所有书籍 publish = Publish.objects.get(name = "人民出版社" ) book_list = publish.bookList. all () # 与人民出版社关联的所有书籍对象集合 |
基于双下划线的跨表查询
Django 还提供了一种直观而高效的方式在查询(lookups)中表示关联关系,它能自动确认 SQL JOIN 联系。要做跨关系查询,就使用两个下划线来链接模型(model)间关联字段的名称,直到最终链接到你想要的model 为止。
'''
正向查询按字段,反向查询按表名小写用来告诉ORM引擎join哪张表
'''
一对多查询
# 练习: 查询苹果出版社出版过的所有书籍的名字与价格(一对多) # 正向查询 按字段:publish queryResult=Book.objects
.filter(publish__name="苹果出版社")
.values_list("title","price") # 反向查询 按表名:book queryResult=Publish.objects
.filter(name="苹果出版社")
.values_list("book__title","book__price")
多对多查询
# 练习: 查询alex出过的所有书籍的名字(多对多) # 正向查询 按字段:authors:
queryResult=Book.objects
.filter(authors__name="yuan")
.values_list("title") # 反向查询 按表名:book
queryResult=Author.objects
.filter(name="yuan")
.values_list("book__title","book__price")
一对一查询
# 查询alex的手机号 # 正向查询
ret=Author.objects.filter(name="alex").values("authordetail__telephone") # 反向查询
ret=AuthorDetail.objects.filter(author__name="alex").values("telephone")
进阶练习(连续跨表)
# 练习: 查询人民出版社出版过的所有书籍的名字以及作者的姓名 # 正向查询
queryResult=Book.objects
.filter(publish__name="人民出版社")
.values_list("title","authors__name")
# 反向查询
queryResult=Publish.objects
.filter(name="人民出版社")
.values_list("book__title","book__authors__age","book__authors__name") # 练习: 手机号以151开头的作者出版过的所有书籍名称以及出版社名称 # 方式1:
queryResult=Book.objects
.filter(authors__authorDetail__telephone__regex="151")
.values_list("title","publish__name")
# 方式2:
ret=Author.objects
.filter(authordetail__telephone__startswith="151")
.values("book__title","book__publish__name")
related_name
反向查询时,如果定义了related_name ,则用related_name替换表名,例如:
1
|
publish = ForeignKey(Blog, related_name = 'bookList' ) |
# 练习: 查询人民出版社出版过的所有书籍的名字与价格(一对多) # 反向查询 不再按表名:book,而是related_name:bookList queryResult=Publish.objects
.filter(name="人民出版社")
.values_list("bookList__title","bookList__price")
聚合查询与分组查询
聚合
aggregate(*args, **kwargs)
1
2
3
4
|
# 计算所有图书的平均价格 >>> from django.db.models import Avg >>> Book.objects. all ().aggregate(Avg( 'price' )) { 'price__avg' : 34.35 } |
aggregate()是QuerySet 的一个终止子句,意思是说,它返回一个包含一些键值对的字典。键的名称是聚合值的标识符,值是计算出来的聚合值。键的名称是按照字段和聚合函数的名称自动生成出来的。如果你想要为聚合值指定一个名称,可以向聚合子句提供它。
1
2
|
>>> Book.objects.aggregate(average_price = Avg( 'price' )) { 'average_price' : 34.35 } |
如果你希望生成不止一个聚合,你可以向aggregate()子句中添加另一个参数。所以,如果你也想知道所有图书价格的最大值和最小值,可以这样查询:
1
2
3
|
>>> from django.db.models import Avg, Max , Min >>> Book.objects.aggregate(Avg( 'price' ), Max ( 'price' ), Min ( 'price' )) { 'price__avg' : 34.35 , 'price__max' : Decimal( '81.20' ), 'price__min' : Decimal( '12.99' )} |
分组
###################################--单表分组查询--####################################################### 查询每一个部门名称以及对应的员工数 emp: id name age salary dep
1 alex 12 2000 销售部
2 egon 22 3000 人事部
3 wen 22 5000 人事部 sql语句:
select dep,Count(*) from emp group by dep; ORM:
emp.objects.values("dep").annotate(c=Count("id") ###################################--多表分组查询--########################### 多表分组查询: 查询每一个部门名称以及对应的员工数 emp: id name age salary dep_id
1 alex 12 2000 1
2 egon 22 3000 2
3 wen 22 5000 2 dep id name
1 销售部
2 人事部 emp-dep: id name age salary dep_id id name
1 alex 12 2000 1 1 销售部
2 egon 22 3000 2 2 人事部
3 wen 22 5000 2 2 人事部 sql语句:
select dep.name,Count(*) from emp left join dep on emp.dep_id=dep.id group by dep.id ORM:
dep.objetcs.values("id").annotate(c=Count("emp")).values("name","c")
class Emp(models.Model):
name=models.CharField(max_length=32)
age=models.IntegerField()
salary=models.DecimalField(max_digits=8,decimal_places=2)
dep=models.CharField(max_length=32)
province=models.CharField(max_length=32)
annotate()为调用的QuerySet中每一个对象都生成一个独立的统计值(统计方法用聚合函数)。
总结 :跨表分组查询本质就是将关联表join成一张表,再按单表的思路进行分组查询。
查询练习
(1) 练习:统计每一个出版社的最便宜的书
1
2
3
|
publishList = Publish.objects.annotate(MinPrice = Min ( "book__price" )) for publish_obj in publishList: print (publish_obj.name,publish_obj.MinPrice) |
annotate的返回值是querySet,如果不想遍历对象,可以用上valuelist:
queryResult= Publish.objects
.annotate(MinPrice=Min("book__price"))
.values_list("name","MinPrice")
print(queryResult)
'''
SELECT "app01_publish"."name", MIN("app01_book"."price") AS "MinPrice" FROM "app01_publish"
LEFT JOIN "app01_book" ON ("app01_publish"."nid" = "app01_book"."publish_id")
GROUP BY "app01_publish"."nid", "app01_publish"."name", "app01_publish"."city", "app01_publish"."email"
'''
(2) 练习:统计每一本书的作者个数
ret=Book.objects.annotate(authorsNum=Count('authors__name'))
(3) 统计每一本以py开头的书籍的作者个数:
queryResult=Book.objects
.filter(title__startswith="Py")
.annotate(num_authors=Count('authors'))
(4) 统计不止一个作者的图书:
queryResult=Book.objects
.annotate(num_authors=Count('authors'))
.filter(num_authors__gt=1)
(5) 根据一本图书作者数量的多少对查询集 QuerySet进行排序:
1
|
Book.objects.annotate(num_authors = Count( 'authors' )).order_by( 'num_authors' ) |
(6) 查询各个作者出的书的总价格:
# 按author表的所有字段 group by
queryResult=Author.objects
.annotate(SumPrice=Sum("book__price"))
.values_list("name","SumPrice")
print(queryResult)
F查询与Q查询
F查询
在上面所有的例子中,我们构造的过滤器都只是将字段值与某个常量做比较。如果我们要对两个字段的值做比较,那该怎么做呢?
Django 提供 F() 来做这样的比较。F() 的实例可以在查询中引用字段,来比较同一个 model 实例中两个不同字段的值。
1
2
3
4
|
# 查询评论数大于收藏数的书籍 from django.db.models import F Book.objects. filter (commnetNum__lt = F( 'keepNum' )) |
Django 支持 F() 对象之间以及 F() 对象和常数之间的加减乘除和取模的操作。
1
2
|
# 查询评论数大于收藏数2倍的书籍 Book.objects. filter (commnetNum__lt = F( 'keepNum' ) * 2 ) |
修改操作也可以使用F函数,比如将每一本书的价格提高30元:
1
|
Book.objects. all ().update(price = F( "price" ) + 30 ) |
Q查询
filter() 等方法中的关键字参数查询都是一起进行“AND” 的。 如果你需要执行更复杂的查询(例如OR 语句),你可以使用Q 对象。
1
2
|
from django.db.models import Q Q(title__startswith = 'Py' ) |
Q 对象可以使用& 和| 操作符组合起来。当一个操作符在两个Q 对象上使用时,它产生一个新的Q 对象。
1
|
bookList = Book.objects. filter (Q(authors__name = "yuan" )|Q(authors__name = "egon" )) |
等同于下面的SQL WHERE 子句:
1
|
WHERE name = "yuan" OR name = "egon" |
你可以组合& 和| 操作符以及使用括号进行分组来编写任意复杂的Q 对象。同时,Q 对象可以使用~ 操作符取反,这允许组合正常的查询和取反(NOT) 查询:
1
|
bookList = Book.objects. filter (Q(authors__name = "yuan" ) & ~Q(publishDate__year = 2017 )).values_list( "title" ) |
查询函数可以混合使用Q 对象和关键字参数。所有提供给查询函数的参数(关键字参数或Q 对象)都将"AND”在一起。但是,如果出现Q 对象,它必须位于所有关键字参数的前面。例如:
1
2
3
|
bookList = Book.objects. filter (Q(publishDate__year = 2016 ) | Q(publishDate__year = 2017 ), title__icontains = "python" ) |
Django框架(四)的更多相关文章
- Django框架(四) Django之视图层
视图函数 一个视图函数,简称视图,是一个简单的Python 函数,它接受Web请求并且返回Web响应.响应可以是一张网页的HTML内容,一个重定向,一个404错误,一个XML文档,或者一张图片. . ...
- 第三百一十四节,Django框架,自定义分页
第三百一十四节,Django框架,自定义分页 自定义分页模块 #!/usr/bin/env python #coding:utf-8 from django.utils.safestring impo ...
- 第三百零四节,Django框架,urls.py模块,views.py模块,路由映射与路由分发以及逻辑处理——url控制器
Django框架,urls.py模块,views.py模块,路由映射与路由分发以及逻辑处理——url控制器 这一节主讲url控制器 一.urls.py模块 这个模块是配置路由映射的模块,当用户访问一个 ...
- 四 Django框架,models.py模块,数据库操作——创建表、数据类型、索引、admin后台,补充Django目录说明以及全局配置文件配置
Django框架,models.py模块,数据库操作——创建表.数据类型.索引.admin后台,补充Django目录说明以及全局配置文件配置 数据库配置 django默认支持sqlite,mysql, ...
- django框架的models
在django的框架设计中采用了mtv模型,即Model,template,viewer Model相对于传统的三层或者mvc框架来说就相当对数据处理层,它主要负责与数据的交互,在使用django框架 ...
- MySQL在Django框架下的基本操作(MySQL在Linux下配置)
[原]本文根据实际操作主要介绍了Django框架下MySQL的一些常用操作,核心内容如下: ------------------------------------------------------ ...
- Django框架全面讲解
Python的WEB框架有Django.Tornado.Flask 等多种,Django相较与其他WEB框架其优势为:大而全,框架本身集成了ORM.模型绑定.模板引擎.缓存.Session等诸多功能. ...
- django框架 - 实时查看执行的sql语句
django框架采用的ORM模型,我们可以通过mysql的日志记录实时看到执行的sql语句,具体步骤如下: 第一步:找到mysql的配置文件 第二步:编辑mysql配置文件 第三步:重启mysql 第 ...
- Python必学Django框架,入门到精通学习视频教程全都在这可以领
“人生苦短,我用python”,学python的小伙伴应该都了解这句话的含义.但是,学python,你真正了了解强大的Django框架吗!? 据说Django还是由吉普赛的一个吉他手的名字命名的呢,有 ...
- Django框架详细介绍---中间件(认证)
一.绪论 在cookie和session的应用中,通过在视图函数内添加装饰器判断用户是否登录,把没有登录的用户请求跳转到登录页面,通过给几个特定视图函数加装饰器实现了这个需求.但是以后添加的视图函数可 ...
随机推荐
- C#基础加强(4)之秒懂IL、CTS、CLS和CLR
IL(Intermediate Language) 中间语言..Net 平台下不只有 C# 语言,还有 VB.Net.F# 等语言.IL 是程序最终编译的可执行二进制代码(托管代码),类似于 Java ...
- java框架之SpringBoot(3)-日志
市面上的日志框架 日志抽象层 日志实现 JCL(Jakarta Commons Logging).SLF4J(Simple Logging Facade For Java).JBoss-Logging ...
- java框架之SpringBoot(14)-任务
使用 maven 创建 SpringBoot 项目,引入 Web 场景启动器. 异步任务 1.编写异步服务类,注册到 IoC 容器: package zze.springboot.task.servi ...
- Echarts-图表根据值的不同展示成不同的颜色
series : [ { name:'直接访问', type:'bar', barWidth: '60%', ...
- XMLHttpRequest请求被劫持
十几个请求中随机一个转到 <html><head><script language="javascript">setTimeout(" ...
- DTCC2019第十届中国数据库技术大会将于5月在北京召开
作为国内顶级的数据领域技术盛会,10年来,DTCC见证了国内数据库技术的迅猛发展,各种分布式数据库.NoSQL.NewSQL技术异军突起,与Oracle.DB2等分庭抗礼,甚至大有超越之势.在这种背景 ...
- SQL Server 百万级数据提高查询速度的方法(转)
1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描.2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及 ...
- 国内老版本ubuntu更新源地址以及sources.list的配置方法
在终端输入并运行 sudo apt-get install vimsudo cp /etc/apt/sources.list /etc/apt/sources.list.backup (备份当前的源列 ...
- C#中哈希表(HashTable)的用法详解以及和Dictionary比较
1. 哈希表(HashTable)简述 在.NET Framework中,Hashtable是System.Collections命名空间提供的一个容器,用于处理和表现类似keyvalue的键值对, ...
- Matlab的用法总结
1. 对序列进行洗牌 randperm() randperm()产生随机的序列 %if filepaths 是一个5*1的结构体,then cshuffle = randperm(length(fil ...