tensorflow world language model
上文提到了pytorch里的world language model,那么怎么能不说tensorflow的实现呢,还是以tensorflow ptb的代码为例说说。
地址:
https://github.com/tensorflow/models/tree/master/tutorials/rnn/ptb
大概处理流程是,一大段文章,然后转成ids,然后根据batchsize切割成。batchsize * M
num_steps是一个sequence的长度
epoch_size 就是进行多少轮训练,算法就是一个batch内文本的长度,除以sequence的长度。一个文本都切成多少个sequence就训练多少轮。
用strided_slice切割也很有意思,接受两个参数,第一个参数是左上角的点,第二个参数是右下角的点,你感受下下面是怎么切割,的横坐标不变,永远是一个batchsize,然后纵坐标开始从左到右开始切割。非常直观。
epoch_size = (batch_len - 1) // num_steps
i = tf.train.range_input_producer(epoch_size, shuffle=False).dequeue()
x = tf.strided_slice(data, [0, i * num_steps],
[batch_size, (i + 1) * num_steps])
x.set_shape([batch_size, num_steps])
y = tf.strided_slice(data, [0, i * num_steps + 1],
[batch_size, (i + 1) * num_steps + 1])
y.set_shape([batch_size, num_steps])
return x, y
训练的代码也比较直观
inputs = tf.nn.embedding_lookup(embedding, input_.input_data)
input_data的维度是batchsize * sequence,进行embding_lookup之后就是
batchsize * sequence*embsize
因为sequence上每一个词都有一个embding结果(每个词都去查表了)
下面的代码是核心:
对于num_steps也就是sequence上每一个词,进行循环。每一个time_step取出一个batchsize *embsize 和一个hidden作为输入,
然后输出一个batchsize *embsize 和一个hidden,这里把每一个时刻的输出都存到一个outputs 数组里面。所有outputs 的维度应该是:sequence*batchsize *embsize。
outputs = []
state = self._initial_state
with tf.variable_scope("RNN"):
for time_step in range(num_steps):
if time_step > 0: tf.get_variable_scope().reuse_variables()
(cell_output, state) = cell(inputs[:, time_step, :], state)
outputs.append(cell_output)
这边把outputs进行一个变换,变成output的维度是value *embsize二维矩阵 。其中value长度等于sequence*batchsize。
在有了output之后,就可以根据wx+b生成一个logits,最后根据这个logits去和这个target进行求loss,很显然,这个logits的维度是
value*vocabsize 。这里很坑爹。logits的第一维度是sequence*batchsize的乘积,我们用起来就不是很爽了,所以如果你想拿某个词的具体的logit的话,可以固定batchsize =1
output = tf.reshape(tf.stack(axis=1, values=outputs), [-1, size])
softmax_w = tf.get_variable(
"softmax_w", [size, vocab_size], dtype=data_type())
softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype=data_type())
logits = tf.matmul(output, softmax_w) + softmax_b
loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example(
[logits],
[tf.reshape(input_.targets, [-1])],
[tf.ones([batch_size * num_steps], dtype=data_type())])
self._cost = cost = tf.reduce_sum(loss) / batch_size
self._final_state = state
tensorflow world language model的更多相关文章
- language model ——tensorflow 之RNN
代码结构 tf的代码看多了之后就知道其实官方代码的这个结构并不好: graph的构建和训练部分放在了一个文件中,至少也应该分开成model.py和train.py两个文件,model.py中只有一个P ...
- NLP问题特征表达基础 - 语言模型(Language Model)发展演化历程讨论
1. NLP问题简介 0x1:NLP问题都包括哪些内涵 人们对真实世界的感知被成为感知世界,而人们用语言表达出自己的感知视为文本数据.那么反过来,NLP,或者更精确地表达为文本挖掘,则是从文本数据出发 ...
- Sequence Models Week 1 Character level language model - Dinosaurus land
Character level language model - Dinosaurus land Welcome to Dinosaurus Island! 65 million years ago, ...
- Traditional Language Model
Traditional Language Model通常用于回答下述问题: How likely is a string of English words good English ? \(p_{LM ...
- [IR] Tolerant Retrieval & Spelling Correction & Language Model
Dictionary不一定是个list,它可以是多种形式. 放弃Hash的原因: 通常,tree是比较适合的结构. From: http://www.cnblogs.com/v-July-v/arch ...
- 用CNTK搞深度学习 (二) 训练基于RNN的自然语言模型 ( language model )
前一篇文章 用 CNTK 搞深度学习 (一) 入门 介绍了用CNTK构建简单前向神经网络的例子.现在假设读者已经懂得了使用CNTK的基本方法.现在我们做一个稍微复杂一点,也是自然语言挖掘中很火 ...
- A Neural Probabilistic Language Model
A Neural Probabilistic Language Model,这篇论文是Begio等人在2003年发表的,可以说是词表示的鼻祖.在这里给出简要的译文 A Neural Probabili ...
- 论文分享|《Universal Language Model Fine-tuning for Text Classificatio》
https://www.sohu.com/a/233269391_395209 本周我们要分享的论文是<Universal Language Model Fine-tuning for Text ...
- 将迁移学习用于文本分类 《 Universal Language Model Fine-tuning for Text Classification》
将迁移学习用于文本分类 < Universal Language Model Fine-tuning for Text Classification> 2018-07-27 20:07:4 ...
随机推荐
- bugfree3.0.1-导入excel测试用例
大多数项目里只用BugFree做缺陷管理工具,其实还可以通过该工具导入测试用例,记录测试结果,最后获得统计结果. 难点 1.导入文件要求XML格式: 2.一般我们的测试用例都是用excle文件存取,很 ...
- echart tootip使用技巧
1.关于混合折线图tooltip显示不同单位 formatter: function (params){ return params[0].name + '<br/>' + params ...
- 266B
#include <stdio.h> #define MAXSIZE 1024 char que[MAXSIZE]; int main() { int n, t; scanf(" ...
- 墨刀联合有赞Vant组件库,让你轻松设计出电商原型
继上周新上线了简历模板之后,本周墨刀的原型模板库又欢喜地增添一名新成员! 有赞Vant组件库 (做电商的宝宝要捂嘴笑了) Vant 组件库是有赞前端团队开源的一套基于Vue的UI组件库,目前版本收 ...
- python类中的内置函数
__init__():__init__方法在类的一个对象被建立时,马上运行.这个方法可以用来对你的对象做一些你希望的初始化.注意,这个名称的开始和结尾都是双下划线.代码例子: #!/usr/bin/p ...
- 主线程——main线程
定义一个普通的类: 引用这个类,执行main方法,main方法就是一个主线程: 线程:进程的执行单元,可以理解为栈内存中的所执行的方法(除了main方法之外都是线程中的run方法)地址开辟通往cpu的 ...
- JVM探秘5---JVM监控命令大全
jps命令---查看JVM进程状况 格式为:jps [options] [hostid] 功能描述: jps是用于查看有权访问的hotspot虚拟机的进程. 当未指定hostid时,默认查看本机jvm ...
- vscode格式化代码插件Beautify
vscode格式化代码安装 VsCode 格式化代码插件搜索并安装 Beautify 格式化代码插件使用:打开要格式化的文件 —> F1 —> Beautify file —> 选择 ...
- 使用addeventlistener为js动态创建的元素添加事件监听
点击li弹出内容,并且动态添加li之后有效 <button onclick="addFunction()">点我增加</button> <ul> ...
- ListTile
const ListTile({ Key key, this.leading, // item 前置图标 this.title, // item 标题 this.subtitle, // item 副 ...