题目传送门:https://www.luogu.org/problemnew/show/P3959

题意:给出一个有$N$个点的图,求其中的一个生成树(指定一个点为根),使得$\sum\limits_{i=1}^{N-1} v_i \times dep_i$最小,其中$v_i$为生成树上某条边的边权,$dep_i$为这条边连接的两个点中深度较浅的点的深度。$N \leq 12 , v \leq 5 \times 10^5$


$N \leq 12$给我们一个很强烈的信息:状态压缩

(所以这题还可以用暴力枚举+可持久化并查集拿90pts,用%你退火和诡异贪心拿到满分)

我们不妨考虑一层一层加入点

设$g_{i,j}$表示点集$j$向点集$i$每个点连一条边的最小权值和,可以在$O(3^NN^2)$的复杂度内算出(似乎可以优化成$O(3^NN)$)

然后设$f_{i,j}$表示现在的生成树中有$i$层节点,其中深度最深的节点集合为$j$时的最小权值,考虑转移为$f_{i+1,k}=f_{i,j}+g_{j,k}$

最后答案为$min\{f_{k,(1<<N)-1}\}$

复杂度为$O(3^NN^2)$,实际可优化成$O(3^NN)$

 // luogu-judger-enable-o2
 #include<bits/stdc++.h>
 #define MAXN (1 << 12) + 1
 using namespace std;

 inline int read(){
     ;
     char c = getchar();
     while(!isdigit(c))
         c = getchar();
     while(isdigit(c)){
         a = (a << ) + (a << ) + (c ^ ');
         c = getchar();
     }
     return a;
 }

 inline int min(int a , int b){
     return a < b ? a : b;
 }

 ][MAXN] , route[][];

 int main(){
     memset(route , 0x3f , sizeof(route));
     memset(g , 0x3f , sizeof(g));
     int N = read() , M = read();
     ){
         cout << ;
         ;
     }
      ; i < N ; i++)
         g[][ << i] = ;
     while(M--){
         int a = read() , b = read() , c = read();
         route[a][b] = route[b][a] = min(route[a][b] , c);
     }
      ; i <  << N ; i++){
          << N) - ) ^ i;
          & s){
             int p = j;
             for(int k = p & -p ; p ; k = p & -p){
                 int minN = 0x3f3f3f3f;
                 p -= k;
                  , q = i;
                 for(int m = q & -q ; q ; m = q & -q){
                     q -= m;
                     minN = min(minN , route[t][(]);
                 }
                 if(minN == 0x3f3f3f3f){
                     f[i][j] = 0x3f3f3f3f;
                     break;
                 }
                 f[i][j] += minN;
             }
         }
     }
      ; i < N ; i++)
          ; j <  << N ; j++){
             if(j == (j & -j))
                 continue;
              & j ; k ; k = k -  & j)
                 ][j ^ k] != 0x3f3f3f3f)
                     g[i][j] = min(g[i][j] , g[i - ][j ^ k] + f[j ^ k][k] * i);
         }
     int all = 0x7fffffff;
      ; i < N ; i++)
         all = min(all , g[i][( << N) - ]);
     cout << all;
     ;
 }

Luogu3959 NOIP2017 宝藏 状压DP的更多相关文章

  1. [NOIP2017]宝藏 状压DP

    [NOIP2017]宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖 ...

  2. 洛谷$P3959\ [NOIp2017]$ 宝藏 状压$dp$

    正解:状压$dp$ 解题报告: 传送门$QwQ$ $8102$年的时候就想搞这题了,,,$9102$了$gql$终于开始做这题了$kk$ 发现有意义的状态只有当前选的点集和深度,所以设$f_{i,j} ...

  3. Luogu 3959 [NOIP2017] 宝藏- 状压dp

    题解 真的想不到这题状压的做法...听说还有跑的飞快的模拟退火,要是现场做绝对滚粗QAQ. 不考虑深度,先预处理出 $pt_{i, S}$ 表示让一个不属于 集合 $S$ 的 点$i$ 与点集 $S$ ...

  4. $[NOIp2017]$ 宝藏 状压$dp$

    \(Sol\) 觉得这里是个很巧妙的地方吖,就是记下当前扩展点集的最大深度,然后强制下一步扩展的点集都是最大深度+1.这样做在当前看可能会导致误算答案导致答案偏大,但是整个\(dp\)完成后一定可以得 ...

  5. NOIp2017D2T2(luogu3959) 宝藏 (状压dp)

    时隔多年终于把这道题锅过了 数据范围显然用搜索剪枝状压dp. 可以记还有哪些点没到(或者已到了哪些点).我们最深已到的是哪些点.这些点的深度是多少,然后一层一层地往下推. 但其实是没必要记最深的那一层 ...

  6. P3959 宝藏 状压dp

    之前写了一份此题关于模拟退火的方法,现在来补充一下状压dp的方法. 其实直接在dfs中状压比较好想,而且实现也很简单,但是网上有人说这种方法是错的...并不知道哪错了,但是就不写了,找了一个正解. 正 ...

  7. [Luogu P3959] 宝藏 (状压DP+枚举子集)

    题面 传送门:https://www.luogu.org/problemnew/show/P3959 Solution 这道题的是一道很巧妙的状压DP题. 首先,看到数据范围,应该状压DP没错了. 根 ...

  8. 计蒜客 宝藏 (状压DP)

    链接 : Here! 思路 : 状压DP. 开始想直接爆搜, T掉了, 然后就采用了状压DP的方法来做. 定义$f[S]$为集合$S$的最小代价, $dis[i]$则记录第$i$个点的"深度 ...

  9. loj2318 「NOIP2017」宝藏[状压DP]

    附带其他做法参考:随机化(模拟退火.爬山等等等)配合搜索剪枝食用. 首先题意相当于在图上找一颗生成树并确定根,使得每个点与父亲的连边的权乘以各自深度的总和最小.即$\sum\limits_{i}dep ...

随机推荐

  1. loadrunner 运行脚本-命令行运行脚本

    Loadrunner 运行脚本-命令行运行脚本   by:授客 QQ:1033553122 脚本所在目录 Run-time Settings->Additional Attributes设置   ...

  2. 我的第一个个人博客网站 -> wizzie.top

    从去年下半年实习结束,到找到第一个属于自己的工作,我就开始着手搭建自己的网站. 使用阿里云学生服务器,域名,备案解析后,开始设计网站结构和页面布局. 因为临近毕业,网站真的是写的页面怎么多怎么写,所以 ...

  3. python ctypes 探究 ---- python 与 c 的交互

    近几天使用 python 与 c/c++ 程序交互,网上有推荐swig但效果都不理想,所以琢磨琢磨了 python 的 ctypes 模块.同时,虽然网上有这方面的内容,但是感觉还是没说清楚.这里记录 ...

  4. c# 百度地图api APP SN校验失败

    在使用c#调用百度地图Web服务api遇到的签名(sn校验)问题,在此记录一下,(ip白名单校验的请忽略) 1.首先获取ak与sk,这个两个东西可以从控制台中获取到 2.在这个地址:sn签名算法,里面 ...

  5. 【PAT】B1003 我要通过!

    我觉得这是PAT中最坑的一道题,表述令人很不适应 分析过程: 条件1.只有P,A,T三种字符 条件2.xPATx正确,x可以是空串,或者由A组成的字符串 条件3.如果aPbTc是正确的,aPbATca ...

  6. STL vector简单用法

    初涉c++,此为<算法笔记>中的内容,有待个人理解完善. vector vector翻译为向量,叫做"变长数组"更容易理解. 头文件:#include<vecto ...

  7. 教你优化yum源。配置阿里云的yum镜像源(base和epel)

    一.Centos7的base源配置阿里云的yum源: 1.备份旧的yum源目录下的所有文件 [root@ELK-chaofeng07 yum.repos.d]# mkdir ../yum.repos. ...

  8. 第 16 章 C 预处理器和 C 库(string.h 库中的 memcpy() 和 memmove())

    /*----------------------------------------- mems.c -- 使用 memcpy() 和 memmove() ---------------------- ...

  9. Appium1.9.1 部署及结果检验

    1.官网下载最新的 appium 2.点击 Download Appium 3.选择适用于自己操作系统的版本,我的是 windows版本,就选择如下红圈起的 4.点击安装,一直点 下一步 直到提示安装 ...

  10. yii2 修改验证码小部件样式

    <?= $form->field($model, 'verifyCode',['labelOptions' => ['class' => 'yanzhengma','style ...