吴裕雄 python深度学习与实践(14)
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt threshold = 1.0e-2
x1_data = np.random.randn(100).astype(np.float32)
x2_data = np.random.randn(100).astype(np.float32)
y_data = x1_data * 2 + x2_data * 3 + 1.5 weight1 = tf.Variable(1.)
weight2 = tf.Variable(1.)
bias = tf.Variable(1.)
x1_ = tf.placeholder(tf.float32)
x2_ = tf.placeholder(tf.float32)
y_ = tf.placeholder(tf.float32) y_model = tf.add(tf.add(tf.multiply(x1_, weight1), tf.multiply(x2_, weight2)),bias)
loss = tf.reduce_mean(tf.pow((y_model - y_),2)) train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss) sess = tf.Session()
init = tf.initialize_all_variables()
sess.run(init)
flag = 1
while(flag):
for (x,y) in zip(zip(x1_data, x2_data),y_data):
sess.run(train_op, feed_dict={x1_:x[0],x2_:x[1], y_:y})
if sess.run(loss, feed_dict={x1_:x[0],x2_:x[1], y_:y}) <= threshold:
flag = 0
print("weight1: " ,weight1.eval(sess),"weight2: " ,weight2.eval(sess),"bias: " ,bias.eval(sess))
import tensorflow as tf matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([3., 3.]) sess = tf.Session() print(matrix1)
print(sess.run(matrix1))
print("----------------------")
print(matrix2)
print(sess.run(matrix2))
import tensorflow as tf matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([3., 3.]) sess = tf.Session()
print(sess.run(tf.add(matrix1,matrix2)))
import tensorflow as tf matrix1 = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
matrix2 = tf.constant([1, 1, 1, 1, 1, 1], shape=[2, 3])
result1 = tf.multiply(matrix1,matrix2) sess = tf.Session()
print(sess.run(result1))
import tensorflow as tf matrix1 = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
matrix2 = tf.constant([1, 1, 1, 1, 1, 1], shape=[3, 2])
result2 = tf.matmul(matrix1,matrix2) sess = tf.Session()
print(sess.run(result2))
import tensorflow as tf matrix1 = tf.Variable(tf.ones([3,3]))
matrix2 = tf.Variable(tf.zeros([3,3]))
result = tf.matmul(matrix1,matrix2) init=tf.initialize_all_variables()
sess = tf.Session()
sess.run(init) print(sess.run(matrix1))
print("--------------")
print(sess.run(matrix2))
import tensorflow as tf a = tf.constant([[1,2],[3,4]])
matrix2 = tf.placeholder('float32',[2,2])
matrix1 = matrix2
sess = tf.Session()
a = sess.run(a)
print(sess.run(matrix1,feed_dict={matrix2:a}))
import tensorflow as tf
import numpy as np houses = 100
features = 2 #设计的模型为 2 * x1 + 3 * x2
x_data = np.zeros([houses,2])
for house in range(houses):
x_data[house,0] = np.round(np.random.uniform(50., 150.))
x_data[house,1] = np.round(np.random.uniform(3., 7.))
weights = np.array([[2.],[3.]])
y_data = np.dot(x_data,weights) x_data_ = tf.placeholder(tf.float32,[None,2])
y_data_ = tf.placeholder(tf.float32,[None,1])
weights_ = tf.Variable(np.ones([2,1]),dtype=tf.float32)
y_model = tf.matmul(x_data_,weights_) loss = tf.reduce_mean(tf.pow((y_model - y_data_),2))
train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss) sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init) for _ in range(10):
for x,y in zip(x_data,y_data):
z1 = x.reshape(1,2)
z2 = y.reshape(1,1)
sess.run(train_op,feed_dict={x_data_:z1,y_data_:z2})
print(weights_.eval(sess))
import tensorflow as tf
import numpy as np houses = 100
features = 2 #设计的模型为 2 * x1 + 3 * x2
x_data = np.zeros([100,2])
for house in range(houses):
x_data[house,0] = np.round(np.random.uniform(50., 150.))
x_data[house,1] = np.round(np.random.uniform(3., 7.))
weights = np.array([[2.],[3.]])
y_data = np.dot(x_data,weights) x_data_ = tf.placeholder(tf.float32,[None,2])
weights_ = tf.Variable(np.ones([2,1]),dtype=tf.float32)
y_model = tf.matmul(x_data_,weights_) loss = tf.reduce_mean(tf.pow((y_model - y_data),2))
train_op = tf.train.GradientDescentOptimizer(0.01).minimize(loss) sess = tf.Session()
init = tf.initialize_all_variables()
sess.run(init) for _ in range(20):
sess.run(train_op,feed_dict={x_data_:x_data})
print(weights_.eval(sess))
import numpy as np a = np.array([[1,2,3],[4,5,6]])
print(a)
b = a.flatten()
print(b)
import numpy as np
import tensorflow as tf filename_queue = tf.train.string_input_producer(["D:\\F\\TensorFlow_deep_learn\\data\\cancer.txt"], shuffle=False)
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
record_defaults = [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]
col1, col2, col3, col4, col5 , col6 , col7 = tf.decode_csv(value,record_defaults=record_defaults)
print(col1)
import numpy as np
import tensorflow as tf def readFile(filename):
filename_queue = tf.train.string_input_producer(filename, shuffle=False)
reader = tf.TextLineReader()
key, value = reader.read(filename_queue)
record_defaults = [[1.0], [1.0], [1.0], [1.0], [1.0], [1.0], [1.0]]
col1, col2, col3, col4, col5 , col6 , col7 = tf.decode_csv(value,record_defaults=record_defaults)
label = tf.stack([col1,col2])
features = tf.stack([col3, col4, col5, col6, col7])
example_batch, label_batch = tf.train.shuffle_batch([features,label],batch_size=3, capacity=100, min_after_dequeue=10)
return example_batch,label_batch example_batch,label_batch = readFile(["D:\\F\\TensorFlow_deep_learn\\data\\cancer.txt"]) weight = tf.Variable(np.random.rand(5,1).astype(np.float32))
bias = tf.Variable(np.random.rand(3,1).astype(np.float32))
x_ = tf.placeholder(tf.float32, [None, 5])
y_model = tf.matmul(x_, weight) + bias
y = tf.placeholder(tf.float32, [None, 1]) loss = -tf.reduce_sum(y*tf.log(y_model))
train = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init = tf.initialize_all_variables() with tf.Session() as sess:
sess.run(init)
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(coord=coord)
flag = 1
while(flag):
e_val, l_val = sess.run([example_batch, label_batch])
sess.run(train, feed_dict={x_: e_val, y: l_val})
if sess.run(loss,{x_: e_val, y: l_val}) <= 1:
flag = 0
print(sess.run(weight))
吴裕雄 python深度学习与实践(14)的更多相关文章
- 吴裕雄 python深度学习与实践(15)
import tensorflow as tf import tensorflow.examples.tutorials.mnist.input_data as input_data mnist = ...
- 吴裕雄 python深度学习与实践(18)
# coding: utf-8 import time import numpy as np import tensorflow as tf import _pickle as pickle impo ...
- 吴裕雄 python深度学习与实践(17)
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import time # 声明输 ...
- 吴裕雄 python深度学习与实践(16)
import struct import numpy as np import matplotlib.pyplot as plt dateMat = np.ones((7,7)) kernel = n ...
- 吴裕雄 python深度学习与实践(13)
import numpy as np import matplotlib.pyplot as plt x_data = np.random.randn(10) print(x_data) y_data ...
- 吴裕雄 python深度学习与实践(12)
import tensorflow as tf q = tf.FIFOQueue(,"float32") counter = tf.Variable(0.0) add_op = t ...
- 吴裕雄 python深度学习与实践(11)
import numpy as np from matplotlib import pyplot as plt A = np.array([[5],[4]]) C = np.array([[4],[6 ...
- 吴裕雄 python深度学习与实践(10)
import tensorflow as tf input1 = tf.constant(1) print(input1) input2 = tf.Variable(2,tf.int32) print ...
- 吴裕雄 python深度学习与实践(9)
import numpy as np import tensorflow as tf inputX = np.random.rand(100) inputY = np.multiply(3,input ...
随机推荐
- 重启HA集群NameNode无缘无故挂掉
重启HA集群后,两个NameNode无缘无故挂掉,查看日志时显示错误如下: 原因:journalnode的端口是8485,默认情况下是先NameNode启动后再启动journalnode,如果在Nam ...
- alpha冲刺(5/10)
前言 队名:旅法师 作业链接 队长博客 燃尽图 会议 会议照片 会议内容 陈晓彬(组长) 今日进展: 召开会议 博客撰写 问题困扰: 我想尝试让他们自己安排明天的任务,不知道是否可行. 心得体会: 一 ...
- vc6.0使用
1.文件结构 工作空间dsw 工程1 Source file .cpp,main Header file .h Resource files 工程2 ...
- psql备份和恢复(ubuntu)
备份 sudo pg_dump -U username -f filename.sql dbname 恢复 psql -U username -f filename.sql dbname -- ...
- excel 表格粘贴到word 显示不完整
左上角,十字点,右键,取消固定宽度即可:
- 同一个windows server 部署多个tomcat
只需要修改tomcat目录下conf下的server.xml文件即可,修改地方有三个,把下面这几个端口修改了为不同的端口即可,例如我把这几个端口统一减1了 <Server port=" ...
- HttpWebRequest post 请求超时问题
在使用curl做POST的时候, 当要POST的数据大于1024字节的时候, curl并不会直接就发起POST请求, 而是会分为俩步, 发送一个请求, 包含一个Expect:100-continue, ...
- Python switch(多分支选择)的实现
Python 中没有 switch/case 语法,如果使用 if/elif/else 会出现代码过长.不清晰等问题. 而借助字典就可以实现 switch 的功能 示例: def case1(): # ...
- Zookeeper的下载、安装和启动
一.下载Zookeeper 版本 zookeeper-3.4.13 下载地址:https://archive.apache.org/dist/zookeeper/ 解压后放在/usr/local/zo ...
- Python历史与安装
1.Python发展历史 起源 Python的作者,Guido von Rossum,荷兰人.1982年,Guido从阿姆斯特丹大学获得了数学和计算机硕士学位.然而,尽管他算得上是一位数学家,但他更加 ...