1.最佳字段(Best fields)::

假设我们有一个让用户搜索博客文章的网站(允许多字段搜索,最佳字段查询),就像这两份文档一样:

PUT /my_index/my_type/1
{
"title": "Quick brown rabbits",
"body": "Brown rabbits are commonly seen."
} PUT /my_index/my_type/2
{
"title": "Keeping pets healthy",
"body": "My quick brown fox eats rabbits on a regular basis."
}

// SENSE: 110_Multi_Field_Search/15_Best_fields.json

用户输入了"Brown fox",文档2匹配的更好一些,因为它包含了用户寻找的两个单词。

{
"multi_match": {
"query": "Quick brown fox",
"type": "best_fields", <1>
"fields": [ "title", "body" ],
"tie_breaker": 0.3,
"minimum_should_match": "30%" <2>
}
}
2.多数字段(Most fields)::

一个用来调优相关度的常用技术是将相同的数据索引到多个字段中。它用来尽可能多地匹配文档。

考虑一下most_fields查询是如何执行的:ES会为每个字段生成一个match查询,然后将它们包含在一个bool查询中。

我们可以将查询传入到validate-query API中进行查看:

GET /_validate/query?explain
{
"query": {
"multi_match": {
"query": "Poland Street W1V",
"type": "most_fields",
"fields": [ "street", "city", "country", "postcode" ]
}
}
}

// SENSE: 110_Multi_Field_Search/40_Entity_search_problems.json

它会产生下面的解释(explaination):

(street:poland   street:street   street:w1v)
(city:poland city:street city:w1v)
(country:poland country:street country:w1v)
(postcode:poland postcode:street postcode:w1v)

你可以发现能够在两个字段中匹配poland的文档会比在一个字段中匹配了poland和street的文档的分值要高。

3.跨字段(Cross fields)::

对于一些实体,标识信息会在多个字段中出现,每个字段中只含有一部分信息:

  • Person: first_name 和 last_name
  • Book: titleauthor, 和 description
  • Address: streetcitycountry, 和 postcode

此时,我们希望在任意字段中找到尽可能多的单词。我们需要在多个字段中进行查询,就好像这些字段是一个字段那样。

用户也许会搜索名为"Peter Smith"的人,或者名为"Poland Street W1V"的地址。每个查询的单词都出现在不同的字段中。

如果你在索引文档前就能够自定义_all字段的话,那么使用_all字段就是一个不错的方法。但是,ES同时也提供了一个搜索期间的解决方案:使用类型为cross_fields的multi_match查询。cross_fields类型采用了一种以词条为中心(Term-centric)的方法,这种方法和best_fields及most_fields采用的以字段为中心(Field-centric)的方法有很大的区别。它将所有的字段视为一个大的字段,然后在任一字段中搜索每个词条。

为了阐述以字段为中心和以词条为中心的查询的区别,看看以字段为中心的most_fields查询的解释(译注:通过validate-query API得到):

GET /_validate/query?explain
{
"query": {
"multi_match": {
"query": "peter smith",
"type": "most_fields",
"operator": "and", <1>
"fields": [ "first_name", "last_name" ]
}
}
}

// SENSE: 110_Multi_Field_Search/50_Cross_field.json

<1> operator设为了and,表示所有的词条都需要出现。

对于一份匹配的文档,peter和smith两个词条都需要出现在相同的字段中,要么是first_name字段,要么是last_name字段:

(+first_name:peter +first_name:smith)
(+last_name:peter +last_name:smith)

而以词条为中心的方法则使用了下面这种逻辑:

+(first_name:peter last_name:peter)
+(first_name:smith last_name:smith)

换言之,词条peter必须出现在任一字段中,同时词条smith也必须出现在任一字段中。

cross_fields类型首先会解析查询字符串来得到一个词条列表,然后在任一字段中搜索每个词条。仅这个区别就能够解决在以字段为中心的查询中提到的3个问题中的2个,只剩下倒排文档频度的不同这一问题。

幸运的是,cross_fields类型也解决了这个问题,从下面的validate-query请求中可以看到:

GET /_validate/query?explain
{
"query": {
"multi_match": {
"query": "peter smith",
"type": "cross_fields", <1>
"operator": "and",
"fields": [ "first_name", "last_name" ]
}
}
}

// SENSE: 110_Multi_Field_Search/50_Cross_field.json

<1> cross_fields 使用以词条为中心(Term-centric)进行匹配。

它通过混合(Blending)字段的倒排文档频度来解决词条频度的问题:

+blended("peter", fields: [first_name, last_name])
+blended("smith", fields: [first_name, last_name])

换言之,它会查找词条smith在first_name和last_name字段中的IDF值,然后使用两者中较小的作为两个字段最终的IDF值。因为smith是一个常见的姓氏,意味着它也会被当做一个常见的名字。

提示:为了让cross_fields查询类型能以最佳的方式工作,所有的字段都需要使用相同的解析器。使用了相同的解析器的字段会被组合在一起形成混合字段(Blended Fields)。

如果你包含了使用不同解析链(Analysis Chain)的字段,它们会以和best_fields相同的方式被添加到查询中。比如,如果我们将title字段添加到之前的查询中(假设它使用了一个不同的解析器),得到的解释如下所示:

(+title:peter +title:smith)
(
+blended("peter", fields: [first_name, last_name])
+blended("smith", fields: [first_name, last_name])
)

当使用了minimum_should_match以及operator参数时,这一点尤为重要。

摘自:https://es.xiaoleilu.com/110_Multi_Field_Search/50_Cross_field.html

elasticsearch best_fields most_fields cross_fields从内在实现看区别——本质就是前两者是以field为中心,后者是词条为中心的更多相关文章

  1. Elasticsearch搜索之cross_fields分析

    cross_fields类型采用了一种以词条为中心(Term-centric)的方法,这种方法和best_fields及most_fields采用的以字段为中心(Field-centric)的方法有很 ...

  2. C、C++、C#、Java、php、python语言的内在特性及区别

    C.C++.C#.Java.PHP.Python语言的内在特性及区别: C语言,它既有高级语言的特点,又具有汇编语言的特点,它是结构式语言.C语言应用指针:可以直接进行靠近硬件的操作,但是C的指针操作 ...

  3. docker+springboot+elasticsearch+kibana+elasticsearch-head整合(详细说明 ,看这一篇就够了)

    一开始是没有打算写这一篇博客的,但是看见好多朋友问关于elasticsearch的坑,决定还是写一份详细的安装说明与简单的测试demo,只要大家跟着我的步骤一步步来,100%是可以测试成功的. 一.  ...

  4. 【Elasticsearch 技术分享】—— 十张图带大家看懂 ES 原理 !明白为什么说:ES 是准实时的!

    前言 说到 Elasticsearch ,其中最明显的一个特点就是 near real-time 准实时 -- 当文档存储在Elasticsearch中时,将在1秒内以几乎实时的方式对其进行索引和完全 ...

  5. Java调用Elasticsearch API查询及matchPhraseQuery和matchQuery的区别

    一.引入依赖 <!--Elasticsearch client--> <!-- https://mvnrepository.com/artifact/org.elasticsearc ...

  6. 【ElasticSearch】ES5新特性-keyword-text类型-查询区别

    ES5新特性-keyword-text类型-查询区别 elasticsearch-head Elasticsearch-sql client junneyang (JunneYang) es keyw ...

  7. 再看.net本质(二)

    3.[HTTP协议]  当浏览器寻找到Web服务器的地址之后,浏览器将帮助我们把对服务器的请求转换为一系列参数发送给Web服务器.服务器收到浏览器的请求对数之后,将会分析这些数据并进行处理,然后向浏览 ...

  8. 再看.net本质

    1.[资源的地址-通用资源标识符] 我们在地址栏中输入的内容称为通用资源标识符(Universal Resource Identifier,URI),它有很多种形式,在Web中我们通常使用称为统一资源 ...

  9. 福利,一张图看懂IT售前工程师修炼之道

    职场中的新人如何自我定位? 如何深刻理解IT售前这个职位? 如何从IT售前菜鸟成长为IT售前专家? 推荐这本书<IT售前工程师修炼之道> 本书精华内容 售前的重要性 售前要有逻辑能力 售前 ...

随机推荐

  1. 转载:【Scala】使用Option、Some、None,避免使用null

    转载自Jason DingGitCafe博客主页(http://jasonding1354.gitcafe.io/)Github博客主页(http://jasonding1354.github.io/ ...

  2. 腾讯地图打开地图选取位置 withMap

    https://lbs.qq.com/tool/component-picker.html withMap import React, { Component } from "react&q ...

  3. 1 创建一个存储过程,以及对存储过程的调用 MySQL

    1  首先创建一张tb1表  sql语句如下 CREATE TABLE `tb1` (  `Id` int(11) NOT NULL AUTO_INCREMENT,  `age` int(11) DE ...

  4. Codeforces 1062 - A/B/C/D/E - (Undone)

    链接:http://codeforces.com/contest/1062 A - Prank - [二分] 题意: 给出长度为 $n(1 \le n \le 100)$ 的数组 $a[1 \sim ...

  5. The way to unwind the stack on Linux EABI

    I. probe the stack frame structure The original idea is to unwind the function call stack according ...

  6. Weex小笔记(自己理解,有错请指正)

    在Eros中,做的内容是封装了一些常用的框架,并且优化开发流程为将前端Vue文件打包出资源文件导入项目工程中(本地加载模式,需要注册文件.验证文件),然后原生移动端通过OC写module(功能模块类) ...

  7. 搭建Harbor企业级docker仓库

    搭建Harbor企业级docker仓库 一.Harbor简介 1.Harbor介绍 Harbor是一个用于存储和分发Docker镜像的企业级Registry服务器,通过添加一些企业必需的功能特性,例如 ...

  8. TypeError: object() takes no parameters

    1.定义了类,在类中实现函数功能,但是需要传参数,我在类中没有建立__init__(self,) 导致没法传参.

  9. CFGym101138D Strange Queries 莫队/分块

    正解:莫队/分块 解题报告: 传送门 ummm这题耗了我一天差不多然后我到现在还没做完:D 而同机房的大佬用了一个小时没有就切了?大概这就是大佬和弱鸡的差距趴QAQ 然后只是大概写下思想好了因为代码我 ...

  10. Elasticsearch学习笔记(六)核心概念和分片shard机制

    一.核心概念 1.近实时(Near Realtime NRT) (1)从写入数据到数据可以被搜索到有一个小延迟(大概1秒): (2)基于es执行搜索和分析可以达到秒级 2.集群(Cluster) 一个 ...