LeetCode 363:Max Sum of Rectangle No Larger Than K
题目链接
链接:https://leetcode.com/problems/max-sum-of-rectangle-no-larger-than-k/description/
题解&代码
1、暴力枚举所有的情况,时间复杂度O(n2*m2),实际耗时759 ms
class Solution {
public:
int maxSumSubmatrix(vector<vector<int> >& matrix, int k) {
int n=matrix.size(),m=matrix[0].size();
vector<vector<int> > sumv(n+1,vector<int>(m+1,0));
for(int i=1; i<=n; i++) {
for(int j=1; j<=m; j++) {
sumv[i][j]=matrix[i-1][j-1]+sumv[i-1][j]+sumv[i][j-1]-sumv[i-1][j-1];
}
}
int ans=-INF;
for(int i1=1;i1<=n;i1++){
for(int j1=1;j1<=m;j1++){
for(int i2=i1;i2<=n;i2++){
for(int j2=j1;j2<=m;j2++){
int val=sumv[i2][j2]-sumv[i1-1][j2]-sumv[i2][j1-1]+sumv[i1-1][j1-1];
if(val<=k){
ans=max(ans,val);
}
}
}
}
}
return ans;
}
private:
static const int INF=0x3f3f3f3f;
};
2、先通过枚举一维进行降维,然后再暴力枚举所有区间,时间复杂度O(m2*n2),实际耗时736ms。
class Solution {
public:
int maxSumSubmatrix(vector<vector<int> >& matrix, int k) {
int n=matrix.size(),m=matrix[0].size();
vector<vector<int> > sumv(n+1,vector<int>(m+1,0));
for(int i=1; i<=n; i++) {
for(int j=1; j<=m; j++) {
sumv[i][j]=sumv[i][j-1]+matrix[i-1][j-1];
}
}
int ans=-INF;
vector<int> arr(n+1);
for(int len=1; len<=m; len++) {
for(int j=len; j<=m; j++) {
arr[0]=0;
for(int i=1; i<=n; i++) {
int val=sumv[i][j]-sumv[i][j-len];
arr[i]=val+arr[i-1];
}
for(int i=1;i<=n;i++){
for(int j=0;j<i;j++){
int x=arr[i]-arr[j];
if(x<=k) ans=max(ans,x);
}
}
}
}
return ans;
}
private:
static const int INF=0x3f3f3f3f;
};
3、 第2种方法基础上加一个剪枝,在枚举区间之前,先用dp(O(n))求出最大值区间和最小值区间,然后判断k是否在区间内,时间复杂度:‘玄学’,实际耗时19ms。
class Solution {
public:
int maxSumSubmatrix(vector<vector<int> >& matrix, int k) {
int n=matrix.size(),m=matrix[0].size();
vector<vector<int> > sumv(n+1,vector<int>(m+1,0));
for(int i=1; i<=n; i++) {
for(int j=1; j<=m; j++) {
sumv[i][j]=sumv[i][j-1]+matrix[i-1][j-1];
}
}
int ans=-inf;
vector<int> arr(n+1);
for(int len=1; len<=m; len++) {
for(int j=len; j<=m; j++) {
arr[0]=0;
LL mi=inf,ma=-inf;
LL pre=inf,aft=-inf;
for(int i=1; i<=n; i++) {
int val=sumv[i][j]-sumv[i][j-len];
arr[i]=val+arr[i-1];
pre=min(pre+val,(LL)val);
aft=max(aft+val,(LL)val);
mi=min(mi,pre);
ma=max(ma,aft);
}
if(k<mi) continue;
else if(k==mi) {
ans=k;
} else if(k>=ma) {
ans=max((LL)ans,ma);
} else {
for(int i=1; i<=n; i++) {
for(int j=0; j<i; j++) {
int x=arr[i]-arr[j];
if(x<=k) ans=max(ans,x);
}
}
if(ans==k) return ans;
}
}
}
return ans;
}
private:
static const int inf=0x7fffffff;
typedef long long LL;
};
4、正解:先降维,然后枚举区间终点,用set维护前缀和,用lower_bound去查区间起点,从而O(nlogn)的复杂度解决该问题的一维版本。加上降维的时间复杂度为O(m^2*nlogn)。实际耗时:259ms。
class Solution {
public:
int maxSumSubmatrix(vector<vector<int> >& matrix, int k) {
int n=matrix.size(),m=matrix[0].size();
vector<vector<int> > sumv(n+1,vector<int>(m+1,0));
for(int i=1; i<=n; i++) {
for(int j=1; j<=m; j++) {
sumv[i][j]=sumv[i][j-1]+matrix[i-1][j-1];
}
}
int ans=-INF;
vector<int> pre(n+1),arr(n+1);
set<pair<int,int> > myset;
set<pair<int,int> >::iterator it;
for(int len=1; len<=m; len++) {
for(int j=len; j<=m; j++) {
pre[0]=0;
myset.clear();
for(int i=1; i<=n; i++) {
arr[i]=sumv[i][j]-sumv[i][j-len];
pre[i]=arr[i]+pre[i-1];
myset.insert(make_pair(pre[i],i));
}
for(int i=1;i<=n;i++){
if(arr[i]<=k) ans=max(ans,arr[i]);
int key=k-arr[i]+pre[i];
it=myset.lower_bound(make_pair(key,0x7fffffff));
if(it!=myset.begin()){
it--;
int tmp=it->first;
ans=max(ans,tmp-pre[i]+arr[i]);
}
myset.erase(make_pair(pre[i],i));
}
}
}
return ans;
}
private:
static const int INF=0x7fffffff;
};
5、正解优化版本(空间优化+常数优化)实际耗时:162ms。
class Solution {
public:
int maxSumSubmatrix(vector<vector<int> >& matrix, int k) {
int n=matrix.size(),m=matrix[0].size();
int mi=min(n,m),ma=max(n,m);
bool isColMax=m>n;
int ans=-2147483648;
for(int st=1; st<=mi; st++) {
vector<int> arr(ma+1,0);
for(int ed=st; ed<=mi; ed++) {
set<int> myset;
int cnt=0;
myset.insert(cnt);
for(int i=1; i<=ma; i++) {
arr[i]+=isColMax?matrix[ed-1][i-1]:matrix[i-1][ed-1];
cnt+=arr[i];
set<int>::iterator it=myset.lower_bound(cnt-k);
if(it!=myset.end()) ans=max(ans,cnt-*it);
myset.insert(cnt);
}
}
}
return ans;
}
};
6、方法5+方法3提到的dp剪枝:实际耗时:19ms。
class Solution {
public:
int maxSumSubmatrix(vector<vector<int> >& matrix, int k) {
int n=matrix.size(),m=matrix[0].size();
int mi=min(n,m),ma=max(n,m);
bool isColMax=m>n;
int ans=-2147483648;
for(int st=1; st<=mi; st++) {
vector<int> arr(ma+1,0);
for(int ed=st; ed<=mi; ed++) {
set<int> myset;
int cnt=0;
myset.insert(cnt);
for(int i=1; i<=ma; i++) {
arr[i]+=isColMax?matrix[ed-1][i-1]:matrix[i-1][ed-1];
cnt+=arr[i];
set<int>::iterator it=myset.lower_bound(cnt-k);
if(it!=myset.end()) ans=max(ans,cnt-*it);
myset.insert(cnt);
}
}
}
return ans;
}
};
LeetCode 363:Max Sum of Rectangle No Larger Than K的更多相关文章
- 363. Max Sum of Rectangle No Larger Than K
/* * 363. Max Sum of Rectangle No Larger Than K * 2016-7-15 by Mingyang */ public int maxSumSubmatri ...
- [LeetCode] 363. Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- 【LeetCode】363. Max Sum of Rectangle No Larger Than K 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/max-sum- ...
- 【leetcode】363. Max Sum of Rectangle No Larger Than K
题目描述: Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the ma ...
- [LeetCode] Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- Leetcode: Max Sum of Rectangle No Larger Than K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- 363 Max Sum of Rectangle No Larger Than K 最大矩阵和不超过K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- [Swift]LeetCode363. 矩形区域不超过 K 的最大数值和 | Max Sum of Rectangle No Larger Than K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
- Max Sum of Rectangle No Larger Than K
Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix s ...
随机推荐
- Java输出打印工具类封装
在进行Java打印输出,进行查看字段值的时候,觉得每次写了System.out.println之后,正式发布的时候,还得一个个的删掉,太麻烦了,经过别人的指教,做了一个Java的打印输出封装类,只为记 ...
- CSS命名方式=》BEM
时间:2016-11-04 20:04:53 原文地址:https://github.com/zhongxia245/blog/issues/48 一.背景 挺早就听说过BEM了,也大概的知道怎么用, ...
- 17秋 软件工程 团队第五次作业 Alpha Scrum7
17秋 软件工程 团队第五次作业 Alpha Scrum7 今日完成的任务 世强:部员详情列表的编写与数据交互,完善APP通知模块: 港晨:完成前端登陆界面编写: 树民:完善Web后端数据库访问模块: ...
- 17秋 软件工程 Alpha展示博客
成员简介 姓名 个人简介 博客地址 郑世强 郑世强,计算机三班,了解java web端和Android端编程,使用过Spring MVC和Spring Boot开发商业程序,Android端学习了rx ...
- PyQt5 + QtDesigner
看到网上蛮多介绍做界面开发时可以借助QtDesigner进行快速完成布局,搞了半天在电脑里却找不到该工具,网上查了一下,原来是要额外安装一个pyqt5的工具包,下面结合亲身一步一步操作记录下来,也方便 ...
- 【 nginx 】怎么安装nginx
一,下载地址:http://nginx.org/en/download.html 二,下载完成之后,是一个安装包,解压之后就能直接使用 三,点击进去我们刚刚解压好的nginx的安装包,打开nginx. ...
- Java SE和Java EE应用的性能调优
凡事预则立,不预则废,和很多事情一样.Java性能调优的成功.离不开行动计划.方法或策略以及特定的领域背景知识.为了在Java性能调优工作中有所成就.你得超越"花似雾中看"的状态, ...
- centos7下安装docker(9.1容器对资源的使用限制-CPU)
默认情况下,所有容器可以平等的使用host上的CPU资源并没有限制 1.docker可以通过-c或者--cpu-shares设置容器使用的权重.如果不指定,默认值为1024. 与内存的限额不同,通过- ...
- 2018-2019-2 网络对抗技术 20165318 Exp5 MSF基础应用
2018-2019-2 网络对抗技术 20165318 Exp5 MSF基础应用 原理与实践说明 实践原理 实践内容概述 基础问题回答 攻击实例 主动攻击的实践 ms08_067_netapi:自动化 ...
- logstash同步mysql数据到mysql(问题一)
问题 通过logstash同步数据时 字段类型为tinyint时 通过过去 0变成了false 1变为了true 时间类型 变为 2018-10-16T14:58:02.871Z 分析 开始尝试通过 ...