关于MapReduce中自定义分区类(四)
MapTask类
if(useNewApi){
runNewMapper(job, splitMetaInfo, umbilical, reporter);
}
@SuppressWarnings("unchecked")
private<INKEY,INVALUE,OUTKEY,OUTVALUE>
void runNewMapper(final JobConf job,
final TaskSplitIndex splitIndex,
final TaskUmbilicalProtocol umbilical,
TaskReporter reporter
) throws IOException,ClassNotFoundException,
InterruptedException{
// make a task context so we can get the classes
org.apache.hadoop.mapreduce.TaskAttemptContext taskContext =
new org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl(job,
getTaskID(),
reporter);
// make a mapper
org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE> mapper =
(org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>)
ReflectionUtils.newInstance(taskContext.getMapperClass(), job);
// make the input format
org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE> inputFormat =
(org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE>)
ReflectionUtils.newInstance(taskContext.getInputFormatClass(), job);
// rebuild the input split
org.apache.hadoop.mapreduce.InputSplit split = null;
split = getSplitDetails(newPath(splitIndex.getSplitLocation()),
splitIndex.getStartOffset());
LOG.info("Processing split: "+ split);
org.apache.hadoop.mapreduce.RecordReader<INKEY,INVALUE> input =
newNewTrackingRecordReader<INKEY,INVALUE>
(split, inputFormat, reporter, taskContext);
job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());
org.apache.hadoop.mapreduce.RecordWriter output = null;
// get an output object
if(job.getNumReduceTasks()==0){
output = 如果jreduce个数等于0.则执行该方法
newNewDirectOutputCollector(taskContext, job, umbilical, reporter);
}else{
如果reduce个数大于0.则执行该方法
output =newNewOutputCollector(taskContext, job, umbilical, reporter);
}
org.apache.hadoop.mapreduce.MapContext<INKEY, INVALUE, OUTKEY, OUTVALUE>
mapContext =
newMapContextImpl<INKEY, INVALUE, OUTKEY, OUTVALUE>(job, getTaskID(),
input, output,
committer,
reporter, split);
org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context
mapperContext =
newWrappedMapper<INKEY, INVALUE, OUTKEY, OUTVALUE>().getMapContext(
mapContext);
try{
input.initialize(split, mapperContext);
mapper.run(mapperContext);
mapPhase.complete();
setPhase(TaskStatus.Phase.SORT);
statusUpdate(umbilical);
input.close();
input = null;
output.close(mapperContext);
output = null;
} finally {
closeQuietly(input);
closeQuietly(output, mapperContext);
}
}
// get an output object
if(job.getNumReduceTasks()==0){
output = 如果jreduce个数等于0.则执行该方法
newNewDirectOutputCollector(taskContext, job, umbilical, reporter);
}else{
如果reduce个数大于0.则执行该方法
output =newNewOutputCollector(taskContext, job, umbilical, reporter);
}
NewOutputCollector(org.apache.hadoop.mapreduce.JobContext jobContext,
JobConf job,
TaskUmbilicalProtocol umbilical,
TaskReporter reporter
) throws IOException,ClassNotFoundException{
collector = createSortingCollector(job, reporter);
partitions = jobContext.getNumReduceTasks();
if(partitions >1){
partitioner =(org.apache.hadoop.mapreduce.Partitioner<K,V>)
ReflectionUtils.newInstance(jobContext.getPartitionerClass(), job);
}else{
partitioner =new org.apache.hadoop.mapreduce.Partitioner<K,V>(){
@Override
publicint getPartition(K key, V value,int numPartitions){
return partitions -1;
}
};
}
}
/**
* Get the {@link Partitioner} class for the job.
*
* @return the {@link Partitioner} class for the job.
*/
publicClass<? extends Partitioner<?,?>> getPartitionerClass()
throws ClassNotFoundException;
/**
* Get the {@link Partitioner} class for the job.
*
* @return the {@link Partitioner} class for the job.
*/
@SuppressWarnings("unchecked")
publicClass<? extends Partitioner<?,?>> getPartitionerClass()
throws ClassNotFoundException{
return(Class<? extends Partitioner<?,?>>)
conf.getClass(PARTITIONER_CLASS_ATTR,HashPartitioner.class);
}
publicclassHashPartitioner<K, V>extendsPartitioner<K, V>{
/** Use {@link Object#hashCode()} to partition. */
publicint getPartition(K key, V value,
int numReduceTasks){
return(key.hashCode()&Integer.MAX_VALUE)% numReduceTasks;
}
}
@Override
publicint hashCode(){
final int prime =31;
int result =1;
result = prime * result +((account == null)?0: account.hashCode());
// result = prime * result + ((amount == null) ? 0 : amount.hashCode());
return result;
}
publicstaticclassKeyPartitioner extends Partitioner<SelfKey,DoubleWritable>{
@Override
publicint getPartition(SelfKey key,DoubleWritable value,int numPartitions){
/**
* 如何保证数据整体输出上的有序,需要我们自定义业务逻辑
* 必须提示前知道num reduce task 个数?
* \w 单词字符[a-zA-Z_0-9]
*
*/
String account =key.getAccount();
//0xxaaabbb 0-9
//[0-2][3-6][7-9]
if(account.matches("\\w*[0-2]")){
return0;
}elseif(account.matches("\\w*[3-6]")){
return1;
}elseif(account.matches("\\w*[7-9]")){
return2;
}
return0;
}
}
关于MapReduce中自定义分区类(四)的更多相关文章
- 关于MapReduce中自定义分组类(三)
Job类 /** * Define the comparator that controls which keys are grouped together * for a single ...
- 关于MapReduce中自定义Combine类(一)
MRJobConfig public static fina COMBINE_CLASS_ATTR 属性COMBINE_CLASS_ATTR = "mapreduce.j ...
- 在hadoop作业中自定义分区和归约
当遇到有特殊的业务需求时,需要对hadoop的作业进行分区处理 那么我们可以通过自定义的分区类来实现 还是通过单词计数的例子,JMapper和JReducer的代码不变,只是在JSubmit中改变了设 ...
- 关于MapReduce中自定义带比较key类、比较器类(二)——初学者从源码查看其原理
Job类 /** * Define the comparator that controls * how the keys are sorted before they * are pa ...
- MapReduce之自定义分区器Partitioner
@ 目录 问题引出 默认Partitioner分区 自定义Partitioner步骤 Partition分区案例实操 分区总结 问题引出 要求将统计结果按照条件输出到不同文件中(分区). 比如:将统计 ...
- python3.4中自定义数组类(即重写数组类)
'''自定义数组类,实现数组中数字之间的四则运算,内积运算,大小比较,数组元素访问修改及成员测试等功能''' class MyArray: '''保证输入值为数字元素(整型,浮点型,复数)''' de ...
- flask中自定义日志类
一:项目架构 二:自定义日志类 1. 建立log.conf的配置文件 log.conf [log] LOG_PATH = /log/ LOG_NAME = info.log 2. 定义日志类 LogC ...
- 读取SequenceFile中自定义Writable类型值
1)hadoop允许程序员创建自定义的数据类型,如果是key则必须要继承WritableComparable,因为key要参与排序,而value只需要继承Writable就可以了.以下定义一个Doub ...
- Java中自定义注解类,并加以运用
在Java框架中,经常会使用注解,而且还可以省很多事,来了解下自定义注解. 注解是一种能被添加到java代码中的元数据,类.方法.变量.参数和包都可以用注解来修饰.注解对于它所修饰的代码并没有直接的影 ...
随机推荐
- screen:多重视窗管理程序
screen:多重视窗管理程序 screen [-S SCREEN_NAME]: 创建窗口,可指定窗口名称,如果不指定,则是ID.$HOSTNAME screen -ls: 列出所有的screen窗口 ...
- 关于 AVI 的一些代码
#ifndef __HSS_AUTO_REVISE_AVI_FRAMERATE_HSS__ #define __HSS_AUTO_REVISE_AVI_FRAMERATE_HSS__ /******* ...
- apache 开机自启动脚本设置
默认我们源码编译安装apache,是不能使用service这个命令来启动的,通常我们启动的命令是: [root@localhost httpd-2.2.16]# /usr/local/apache2/ ...
- Swift和Objective-C混编注意事项
前言 Swift已推出数年,与Objective-C相比Swift的语言机制及使用简易程度上更接地气,大大降低了iOS入门门槛.当然这对新入行的童鞋没来讲,的确算是福音,但对于整个iOS编程从业者来讲 ...
- 个人CTF资源聚合
i春秋 幻泉 CTF入门课程笔记 视频地址 能力 思维能力 快速学习能力 技术能力 基础 编程基础 (c语言 汇编语言 脚本语言) 数学基础 (算法 密码学) 脑洞 (天马行空的想象推理) 体力耐力( ...
- WinCE项目应用之车载导航
WinCE车载导航系统是我过去几年投入精力比较多的一个项目.我的主要工作内容是BSP的移植.硬件模块的调试和WinCE系统的深度定制.如TDA7415驱动.TDA7415均衡器.慧翰车载蓝牙模块.华为 ...
- webpack入门——webpack的安装与使用
一.简介 1.什么是webpack webpack是近期最火的一款模块加载器兼打包工具,它能把各种资源,例如JS(含JSX).coffee.样式(含less/sass).图片等都作为模块来使用和处理. ...
- [LeetCode] Ones and Zeroes 一和零
In the computer world, use restricted resource you have to generate maximum benefit is what we alway ...
- [LeetCode] Fizz Buzz 嘶嘶嗡嗡
Write a program that outputs the string representation of numbers from 1 to n. But for multiples of ...
- [LeetCode] Number of 1 Bits 位1的个数
Write a function that takes an unsigned integer and returns the number of ’1' bits it has (also know ...