A. Search for Pretty Integers
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given two lists of non-zero digits.

Let's call an integer pretty if its (base 10) representation has at least one digit from the first list and at least one digit from the second list. What is the smallest positive pretty integer?

Input

The first line contains two integers n and m (1 ≤ n, m ≤ 9) — the lengths of the first and the second lists, respectively.

The second line contains n distinct digits a1, a2, ..., an (1 ≤ ai ≤ 9) — the elements of the first list.

The third line contains m distinct digits b1, b2, ..., bm (1 ≤ bi ≤ 9) — the elements of the second list.

Output

Print the smallest pretty integer.

Examples
input
2 3
4 2
5 7 6
output
25
input
8 8
1 2 3 4 5 6 7 8
8 7 6 5 4 3 2 1
output
1
Note

In the first example 25, 46, 24567 are pretty, as well as many other integers. The smallest among them is 25. 42 and 24 are not pretty because they don't have digits from the second list.

In the second example all integers that have at least one digit different from 9 are pretty. It's obvious that the smallest among them is 1, because it's the smallest positive integer.

水题

#include<bits/stdc++.h>
using namespace std;
const int MAX = ;
int main()
{
int n,m,a[MAX],b[MAX],ans=,i,j;
cin>>n>>m;
for(i=;i<=n;i++) cin>>a[i];
for(i=;i<=m;i++) cin>>b[i];
sort(a+,a++n);
sort(b+,b++m);
for(i=;i<=n;i++)
for(j=;j<=m;j++)
{
if(a[i]==b[j])ans=min(ans,a[i]);
}
if(ans==)
{
int u=max(a[],b[]),v=min(a[],b[]);
ans=u+v*;
}
cout<<ans<<endl;
}
B. Maximum of Maximums of Minimums
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given an array a1, a2, ..., an consisting of n integers, and an integer k. You have to split the array into exactly k non-empty subsegments. You'll then compute the minimum integer on each subsegment, and take the maximum integer over the k obtained minimums. What is the maximum possible integer you can get?

Definitions of subsegment and array splitting are given in notes.

Input

The first line contains two integers n and k (1 ≤ k ≤ n ≤  105) — the size of the array a and the number of subsegments you have to split the array to.

The second line contains n integers a1,  a2,  ...,  an ( - 109  ≤  ai ≤  109).

Output

Print single integer — the maximum possible integer you can get if you split the array into k non-empty subsegments and take maximum of minimums on the subsegments.

Examples
input
5 2
1 2 3 4 5
output
5
input
5 1
-4 -5 -3 -2 -1
output
-5
Note

A subsegment [l,  r] (l ≤ r) of array a is the sequence al,  al + 1,  ...,  ar.

Splitting of array a of n elements into k subsegments [l1, r1], [l2, r2], ..., [lk, rk] (l1 = 1, rk = nli = ri - 1 + 1 for all i > 1) is k sequences (al1, ..., ar1), ..., (alk, ..., ark).

In the first example you should split the array into subsegments [1, 4] and [5, 5] that results in sequences (1, 2, 3, 4) and (5). The minimums are min(1, 2, 3, 4) = 1 and min(5) = 5. The resulting maximum is max(1, 5) = 5. It is obvious that you can't reach greater result.

In the second example the only option you have is to split the array into one subsegment [1, 5], that results in one sequence ( - 4,  - 5,  - 3,  - 2,  - 1). The only minimum is min( - 4,  - 5,  - 3,  - 2,  - 1) =  - 5. The resulting maximum is  - 5.

水题.

1. 当n=1的时候绝对是取这一串序列的最小值.

2. 当n=2是会分成两个区间,但不管怎么分是最左边与最右边的数一定是不同区间的,可以推一下,如果要取每个区间最小值中最大的,如序列3 4 1 3 2   / 代表分区间,会有四种分法:3 / 4 1 3 2    3 4 / 1 3 2   3 4 1 / 3 2    3 4 1 3 / 2  ,如果a[1]>a[0],那么最小的还是a[0], 没有变化,如果a[1]<a[0],区间最小值变小,无意义,,从后往前推也是这个道理,所以当n=2的情况下,只需要比较最左边与最右边就可以了.

3.当n=3时,可以直接取到最大的数。

#include<bits/stdc++.h>
using namespace std;
int main()
{
long long m,n,maxx=-,minn=,i,x,a[];
cin>>m>>n;
if(n==){
for(i=;i<m;i++){
cin>>x;
if(x<minn)
minn=x;
}
cout<<minn<<endl;
}
else if(n==){
for(i=;i<m;i++){
cin>>a[i];
}
cout<<max(a[],a[m-])<<endl;
}
else {
for(i=;i<m;i++){
cin>>x;
if(x>maxx)
maxx = x;
}
cout<<maxx<<endl;
}
return ;
}
C. Maximum splitting
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

You are given several queries. In the i-th query you are given a single positive integer ni. You are to represent ni as a sum of maximum possible number of composite summands and print this maximum number, or print -1, if there are no such splittings.

An integer greater than 1 is composite, if it is not prime, i.e. if it has positive divisors not equal to 1 and the integer itself.

Input

The first line contains single integer q (1 ≤ q ≤ 105) — the number of queries.

q lines follow. The (i + 1)-th line contains single integer ni (1 ≤ ni ≤ 109) — the i-th query.

Output

For each query print the maximum possible number of summands in a valid splitting to composite summands, or -1, if there are no such splittings.

Examples
input
1
12
output
3
input
2
6
8
output
1
2
input
3
1
2
3
output
-1
-1
-1
Note

12 = 4 + 4 + 4 = 4 + 8 = 6 + 6 = 12, but the first splitting has the maximum possible number of summands.

8 = 4 + 4, 6 can't be split into several composite summands.

1, 2, 3 are less than any composite number, so they do not have valid splittings.

题目很简单,一开始没看懂题意,题意是求一个数n最多能分解成多少个非素数

优先考虑4,让其对4取模,这样就只有四种情况

余数为0时,正好整除必为多个4组成,这样就是最优解

余数为1时,4+4+1 = 9,退一位,n/4-1,余数1与两个 4凑成9,非素数

余数为2时,4+2=6,不变,4与余数2凑成6,非素数

余数为3时,4+4+4+3=6+9,退一位,(满足你>=15)

综上只要满足>=15,公式就可以通用

#include<bits/stdc++.h>
using namespace std; int main()
{
int n,m,ans,flag;
cin>>n;
while(n--)
{
scanf("%d",&m);
if(m==)printf("-1\n");
else
{
flag=m%;
if(flag==)ans=m/;
else if(flag==)ans=m/-;
else if(flag==)ans=m/;
else ans=m/-;
if(ans<=)
ans=-;
printf("%d\n",ans);
}
}
}

Codeforces Round #440 (Div. 2) A,B,C的更多相关文章

  1. Codeforces Round #440 (Div. 2)【A、B、C、E】

    Codeforces Round #440 (Div. 2) codeforces 870 A. Search for Pretty Integers(水题) 题意:给两个数组,求一个最小的数包含两个 ...

  2. Codeforces Round #440 (Div. 2, based on Technocup 2018 Elimination Round 2)

    A. Search for Pretty Integers 题目链接:http://codeforces.com/contest/872/problem/A 题目意思:题目很简单,找到一个数,组成这个 ...

  3. Codeforces Round #440 (Div. 2, based on Technocup 2018 Elimination Round 2) D. Something with XOR Queries

    地址:http://codeforces.com/contest/872/problem/D 题目: D. Something with XOR Queries time limit per test ...

  4. [日常] Codeforces Round #440 Div.2 大力翻车实况

    上次打了一发ABC然后大力翻车...上午考试又停电+Unrated令人非常滑稽...下午终于到了CF比赛... 赛前大力安利了一发然后拉了老白/ $ljm$ / $wcx$ 一起打, 然后搞了个 TI ...

  5. Codeforces Round #440 Div. 1

    A:显然应该尽量拆成4.如果是奇数,先拆一个9出来即可. #include<iostream> #include<cstdio> #include<cmath> # ...

  6. Codeforces Round #440 (Div. 1, based on Technocup 2018 Elimination Round 2) C - Points, Lines and Ready-made Titles

    C - Points, Lines and Ready-made Titles 把行列看成是图上的点, 一个点(x, y)就相当于x行 向 y列建立一条边, 我们能得出如果一个联通块是一棵树方案数是2 ...

  7. Codeforces Round #440 (Div. 2, based on Technocup 2018 Elimination Round 2) C. Maximum splitting

    地址: 题目: C. Maximum splitting time limit per test 2 seconds memory limit per test 256 megabytes input ...

  8. ACM-ICPC (10/15) Codeforces Round #440 (Div. 2, based on Technocup 2018 Elimination Round 2)

    A. Search for Pretty Integers You are given two lists of non-zero digits. Let's call an integer pret ...

  9. 【Codeforces Round #440 (Div. 2) C】 Maximum splitting

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 肯定用尽量多的4最好. 然后对4取模的结果 为0,1,2,3分类讨论即可 [代码] #include <bits/stdc++ ...

随机推荐

  1. Java多线程编程模式实战指南一:Active Object模式(下)

    Active Object模式的评价与实现考量 Active Object模式通过将方法的调用与执行分离,实现了异步编程.有利于提高并发性,从而提高系统的吞吐率. Active Object模式还有个 ...

  2. GIT 分支管理:多人协作

    当你从远程仓库克隆时,实际上Git自动把本地的master分支和远程的master分支对应起来了,并且,远程仓库的默认名称是origin. 要查看远程库的信息,用git remote: $ git r ...

  3. Linux下查找进程id并强制停止进程的脚本

    Linux下的tomcat的停止脚本shutdown.sh经常失败,造成tomcat进程没关闭.所以只能手动查找进程id,然后用kill命令来强制停止.每次都要这样查一下,然后再杀进程.感觉有点麻烦, ...

  4. core_cm4_simd.h文件是干嘛的?

    core_cm4_simd.h文件用于simd指令,即单指令多数据流,这个只有ARMv7架构才有,Cortex m3 m4 m7是ARMv7架构,而Cortex m0 m1是没有的. 所以,在新建Co ...

  5. centos6.5虚拟机安装后,没有iptables配置文件

    openstack环境里安装centos6.5系统的虚拟机,安装好后,发现没有/etc/syscofig/iptables防火墙配置文件. 解决办法如下: [root@kvm-server005 ~] ...

  6. linux-文件数据操作awk命令

    最后一列是:交互外壳 单引号里的内容不会被bash扩展 cut 同样可以做到 "\t" 制表符 cut 和 sed 结合同样可以实现 扩展:匿名方法可以有多个,and方法只能有一个 ...

  7. SE Springer小组之《Spring音乐播放器》可行性研究报告一、二(转载)

         此文转载自组员小明处~~ 1 引言 1.1编写目的 <软件工程>课程,我们团队计划开发一个音乐播放器.本文档是基于网络上现有的音乐播放器的特点,团队计划实现的音乐播放器功能和团队 ...

  8. SVN入门教程

    1. 什么是SVN SVN全名Subversion,即版本控制系统.SVN与CVS一样,是一个跨平台的软件,支持大多数常见的操作系统. 作为一个开源的版本控制系统,Subversion管理者随时间改变 ...

  9. shell脚本--文件测试

    文件测试是指测试某一个文件或者目录是否存在 测试文件格式[ 操作符 目录或者文件 ]    注意左括号和操作符之间有一个空格,文件或者目录 与右边的括号之间也有一个空格. -d 测试是否为目录 -e ...

  10. Docker Clustering Tools Compared: Kubernetes vs Docker Swarm

    https://technologyconversations.com/2015/11/04/docker-clustering-tools-compared-kubernetes-vs-docker ...