【题解】 bzoj3450 JoyOI1952 Easy (期望dp)
Solution
- 期望的题目真心不太会
- 定义状态\(f[i]\)表示到第\(i\)期望长度,\(dp[i]\)表示期望分数
- 如果上一步的持续\(o\)长度为\(L\),那么贡献是\(L^2\),现在长度为\(L+1\),贡献是\(L^2+2*L+1\),那么添加量就是\(2*L+1\)
- 所以我们可以得到转移方程:
\(ch[i]==o\) 时,\(f[i]=f[i-1]+1 ~~~~~~~~~~~ dp[i]=dp[i-1]+f[i-1]*2+1\)
\(ch[i]==x\) 时,\(f[i]=0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ dp[i]=dp[i-1]\)
\(ch[i]==?\) 时,\(f[i]=(f[i-1]+1)/2 ~~~~~dp[i]=dp[i-1]+(f[i-1]*2+1)/2\)
Code
//it is coded by ning_mew on 7.22
#include<bits/stdc++.h>
using namespace std;
const int maxn=3e5+7;
double ans=0,dp[maxn],f[maxn];
int n;
char ch[maxn];
int main(){
scanf("%d",&n); scanf("%s",ch);
for(int i=1;i<=n;i++){
if(ch[i-1]=='x'){f[i]=0;dp[i]=dp[i-1];continue;}
if(ch[i-1]=='o'){f[i]=f[i-1]+1;dp[i]=dp[i-1]+f[i-1]*2+1;continue;}
if(ch[i-1]=='?'){f[i]=0.5*f[i-1]+0.5;dp[i]=dp[i-1]+(f[i-1]*2+1)/2;continue;}
}printf("%0.4f\n",dp[n]);return 0;
}
博主蒟蒻,随意转载。但必须附上原文链接:http://www.cnblogs.com/Ning-Mew/,否则你会场场比赛暴0!!!
【题解】 bzoj3450 JoyOI1952 Easy (期望dp)的更多相关文章
- 【BZOJ3450】Easy [期望DP]
Easy Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description 某一天WJMZBMR在打osu~~ ...
- 【NOI2005】聪聪与可可 题解(最短路+期望DP)
前言:学长讲的太神了:自己还能推出来DP式子,挺开心. -------------------------- 题目链接 题目大意:给定一张含有$n$个结点$m$条边的无向连通图.现在聪聪在点$s$,可 ...
- 【BZOJ3450】Tyvj1952 Easy 期望DP
[BZOJ3450]Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是 ...
- [BZOJ4318] WJMZBMR打osu! / Easy (期望DP)
题目链接 Solution Wa,我是真的被期望折服了,感觉这道题拿来练手正好. DP的难度可做又巧妙... 我们定义: \(f[i]\) 代表到第 \(i\) 次点击的时候的最大答案. \(g[i] ...
- BZOJ.3450.(JoyOI1952) Easy(期望)
题目链接 /* 设f[i]为到i的期望得分,c[i]为到i的期望连续长度 则若s[i]=='x',f[i]=f[i-1], c[i]=0 s[i]=='0',f[i]=f[i-1]+2*c[i-1]+ ...
- BZOJ 3450 Tyvj1952 Easy ——期望DP
维护$x$和$x^2$的期望递推即可 #include <map> #include <ctime> #include <cmath> #include <q ...
- 洛谷P1365 WJMZBMR打osu! / Easy——期望DP
题目:https://www.luogu.org/problemnew/show/P1365 平方和怎样递推? 其实就是 (x+1)^2 = x^2 + 2*x + 1: 所以我们要关注这里的 x — ...
- [bzoj3450]Tyvj1952 Easy[概率dp]
和之前一样考虑这个音符时x还是o,如果是x,是否是新的连续一段,对答案的贡献是多少$(a^2-{(a-1)}^2)$,然后递推就可以了. #include <bits/stdc++.h> ...
- 洛谷 P3239 [HNOI2015]亚瑟王(期望dp)
题面 luogu 题解 一道复杂的期望\(dp\) 思路来源:__stdcall 容易想到,只要把每张牌打出的概率算出来就可以求出\(ans\) 设\(fp[i]\)表示把第\(i\)张牌打出来的概率 ...
随机推荐
- 使用Topshelf管理Windows服务
目的:以控制台方式开发Windows服务程序,调试部署方便. https://www.cnblogs.com/itjeff/p/8316244.html https://www.cnblogs.com ...
- 多线程-synchronized、lock
1.什么时候会出现线程安全问题? 在多线程编程中,可能出现多个线程同时访问同一个资源,可以是:变量.对象.文件.数据库表等.此时就存在一个问题: 每个线程执行过程是不可控的,可能导致最终结果与实际期望 ...
- 过渡与动画 - 逐帧动画&steps调速函数
写在前面 上一篇中我们熟悉五种内置的缓动曲线和(三次)贝塞尔曲线,并且基于此完成了缓动效果. 但是如果我们想要实现逐帧动画,基于贝塞尔曲线的调速函数就显得有些无能为力了,因为我们并不需要帧与帧之间的过 ...
- pyenv+virtual 笔记
Pyenv + virtualEnv 设置 安装这两个组件是为了适应不同版本的python在同一个系统下的运行:例如现在最明显就是python2.7和python3.6的两个版本,很多库依旧是使用了P ...
- Mybatis 中 columnPrefix别名的用法
1.映射对应的属性,区分他们分别属于哪些类.(sql书写的时候为什么要将前缀加上(别名),是因为便于它去寻找哪个类的前缀是ANNEX_) 2.例: 如下所示当一个collection 定义了一个co ...
- 使用canvas实现一个圆球的触壁反弹
HTML <canvas id="canvas" width="500" height="500" style="borde ...
- Oracle_安装问题
[INS-07003] 访问 BeanStore 时出现意外错误 oracle安装时出现以下问题: 原因:未配置环境变量CLASSPASH 解决方法:新增系统变量,在我的电脑上右击-属性-高级系统 ...
- Ionic 2 中生命周期的命名改变及说明
原文发表于我的技术博客 本文简要整理了在 Ionic 2 的版本中生命周期命名的改变,以及各个事件的解释. 原文发表于我的技术博客 在之前的课程中讲解了 Ionic 生命周期的命名以及使用,不过在 I ...
- linux下日志文件error监控报警脚本分享
即对日志文件中的error进行监控,当日志文件中出现error关键字时,即可报警!(grep -i error 不区分大小写进行搜索"error"关键字,但是会将包含error大小 ...
- 运维中的日志切割操作梳理(Logrotate/python/shell脚本实现)
对于Linux系统安全来说,日志文件是极其重要的工具.不知为何,我发现很多运维同学的服务器上都运行着一些诸如每天切分Nginx日志之类的CRON脚本,大家似乎遗忘了Logrotate,争相发明自己的轮 ...