题面戳我

Solution

  • 期望的题目真心不太会
  • 定义状态\(f[i]\)表示到第\(i\)期望长度,\(dp[i]\)表示期望分数
  • 如果上一步的持续\(o\)长度为\(L\),那么贡献是\(L^2\),现在长度为\(L+1\),贡献是\(L^2+2*L+1\),那么添加量就是\(2*L+1\)
  • 所以我们可以得到转移方程:

\(ch[i]==o\) 时,\(f[i]=f[i-1]+1 ~~~~~~~~~~~ dp[i]=dp[i-1]+f[i-1]*2+1\)

\(ch[i]==x\) 时,\(f[i]=0 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ dp[i]=dp[i-1]\)

\(ch[i]==?\) 时,\(f[i]=(f[i-1]+1)/2 ~~~~~dp[i]=dp[i-1]+(f[i-1]*2+1)/2\)

Code

//it is coded by ning_mew on 7.22
#include<bits/stdc++.h>
using namespace std; const int maxn=3e5+7; double ans=0,dp[maxn],f[maxn];
int n;
char ch[maxn]; int main(){
scanf("%d",&n); scanf("%s",ch);
for(int i=1;i<=n;i++){
if(ch[i-1]=='x'){f[i]=0;dp[i]=dp[i-1];continue;}
if(ch[i-1]=='o'){f[i]=f[i-1]+1;dp[i]=dp[i-1]+f[i-1]*2+1;continue;}
if(ch[i-1]=='?'){f[i]=0.5*f[i-1]+0.5;dp[i]=dp[i-1]+(f[i-1]*2+1)/2;continue;}
}printf("%0.4f\n",dp[n]);return 0;
}

博主蒟蒻,随意转载。但必须附上原文链接:http://www.cnblogs.com/Ning-Mew/,否则你会场场比赛暴0!!!

【题解】 bzoj3450 JoyOI1952 Easy (期望dp)的更多相关文章

  1. 【BZOJ3450】Easy [期望DP]

    Easy Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 某一天WJMZBMR在打osu~~ ...

  2. 【NOI2005】聪聪与可可 题解(最短路+期望DP)

    前言:学长讲的太神了:自己还能推出来DP式子,挺开心. -------------------------- 题目链接 题目大意:给定一张含有$n$个结点$m$条边的无向连通图.现在聪聪在点$s$,可 ...

  3. 【BZOJ3450】Tyvj1952 Easy 期望DP

    [BZOJ3450]Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是 ...

  4. [BZOJ4318] WJMZBMR打osu! / Easy (期望DP)

    题目链接 Solution Wa,我是真的被期望折服了,感觉这道题拿来练手正好. DP的难度可做又巧妙... 我们定义: \(f[i]\) 代表到第 \(i\) 次点击的时候的最大答案. \(g[i] ...

  5. BZOJ.3450.(JoyOI1952) Easy(期望)

    题目链接 /* 设f[i]为到i的期望得分,c[i]为到i的期望连续长度 则若s[i]=='x',f[i]=f[i-1], c[i]=0 s[i]=='0',f[i]=f[i-1]+2*c[i-1]+ ...

  6. BZOJ 3450 Tyvj1952 Easy ——期望DP

    维护$x$和$x^2$的期望递推即可 #include <map> #include <ctime> #include <cmath> #include <q ...

  7. 洛谷P1365 WJMZBMR打osu! / Easy——期望DP

    题目:https://www.luogu.org/problemnew/show/P1365 平方和怎样递推? 其实就是 (x+1)^2 = x^2 + 2*x + 1: 所以我们要关注这里的 x — ...

  8. [bzoj3450]Tyvj1952 Easy[概率dp]

    和之前一样考虑这个音符时x还是o,如果是x,是否是新的连续一段,对答案的贡献是多少$(a^2-{(a-1)}^2)$,然后递推就可以了. #include <bits/stdc++.h> ...

  9. 洛谷 P3239 [HNOI2015]亚瑟王(期望dp)

    题面 luogu 题解 一道复杂的期望\(dp\) 思路来源:__stdcall 容易想到,只要把每张牌打出的概率算出来就可以求出\(ans\) 设\(fp[i]\)表示把第\(i\)张牌打出来的概率 ...

随机推荐

  1. ajax上传文件以及实现上传进度条(转载)

    做微信企业号的时候,在‘我的日志'功能模块里边需要添加一个上传文件的功能,并且要显示上传过程中的进度条和提交后的文件名列表,于是做了基于ajax的文件上传,UI用的是MUI框架,后台是TP框架 前端代 ...

  2. DNS 协议

    DNS 入门 域名系统(英文:Domain Name System,缩写:DNS)是互联网的一项服务.它作为将域名和 IP 地址相互映射的一个分布式数据库,能够使人更方便地访问互联网.DNS 使用 T ...

  3. Python基础语法复习

    1.数据类型 List 列表 函数 append(): 在列表末尾追加. count(): 计算对象在列表中出现的次数. extend():将列表内容添加到列表中. index(): 计算对象在列表中 ...

  4. 如何下载google play商店里面的app?

    如何不FQ的下载这国际版的app呢? 方法如下: https://androidappsapk.co/category/apps/ 你可以直接登入这个网站,下载你所需要的国际版的软件. 就像是踏入一个 ...

  5. BZOJ4614/UVA1742 Oil 计算几何

    传送门 题意:在平面直角坐标系中给出$N$条互不相交的.与$x$轴平行.且在$x$轴上方的线段,每一条线段的价值为其长度.求一条不与$x$轴平行的直线,使得与这条直线相交的线段的价值之和最大,求出这个 ...

  6. b/s程序真的很方便部署吗

    公共应用当然是web系统,这个不说,我说的是企业应用. 最近一些年在企业开发中都提倡web应用,仿佛winform可以结束了,但真的这样吗?最近几天的真实经历如下: 我们部门新开发了一套系统要上线,由 ...

  7. [数据可视化之一]Pandas单变量画图

    Pandas单变量画图 Bar Chat Line Chart Area Chart Histogram df.plot.bar() df.plot.line() df.plot.area() df. ...

  8. eclipse取消空格、等号、分号自动录入

    默认eclipse中按空格.等号.分号等键时,会将提示框中的文字输入到编辑内容中,但是很多时候我们并不希望录入,可如下设置. 1.打开 Eclipse -> Window -> Perfe ...

  9. 通过git命令行从github或服务器上克隆、修改和更新项目

    项目开发时,为了方便版本管理,许多公司采用git来控制项目版本.简单介绍下: 第一步:在本地新建一个文件夹,作为本地仓库,如“test”.打开git bash,进入到该文件夹目录下,如下图: 第二步: ...

  10. Python 学习 第八篇:函数2(参数、lamdba和函数属性)

    函数的参数是参数暴露给外部的接口,向函数传递参数,可以控制函数的流程,函数可以0个.1个或多个参数:在Python中向函数传参,使用的是赋值方式. 一,传递参数 参数是通过赋值来传递的,传递参数的特点 ...