题面

Description

定义两个结点数相同的图 G1 与图 G2 的异或为一个新的图 G, 其中如果 (u, v) 在 G1 与

G2 中的出现次数之和为 1, 那么边 (u, v) 在 G 中, 否则这条边不在 G 中.

现在给定 s 个结点数相同的图 G1...s, 设 S = {G1, G2, . . . , Gs}, 请问 S 有多少个子集的异

或为一个连通图?

Input

第一行为一个整数s, 表图的个数.

接下来每一个二进制串, 第 i 行的二进制串为 gi, 其中 gi 是原图通过以下伪代码转化得

到的. 图的结点从 1 开始编号, 下面设结点数为 n.

Algorithm 1 Print a graph G = (V, E)

for i = 1 to n do

for j = i + 1 to n do

if G contains edge (i, j) then

print 1

else

print 0

end if

end for

end for

2 ≤ n ≤ 10,1 ≤ s ≤ 60.

Output

输出一行一个整数, 表示方案数

Sample Input

3

1

1

0

Sample Output

4

题解

容斥+线性基+DFS

(其中我最不会的居然是DFS! TAT)

要求异或图连通,不会。

考虑容斥。

将n个点分为x组,然后求连通性“至少”是当前分组情况的方案数——什么是“至少”呢?不同组的点之间一定不连通,相同组的点之间可以连通也可以不连通。

这样,最终答案就是:所有分成一组的方案数 - 所有分成两组的 + 所有分成三组的……

n个点分成任意大小组的所有方案都可以DFS枚举出来。

那么已知一种分组方案,如何求有多少图的集合的异或图(原题里提到的那个)满足“不同组的点之间一定不连通”呢?

把每对有要求限制的点对(即不同组之间的点对)用一个二进制位表示, 如果某个图中有这条边,则这一位是1,否则为0,就用一个二进制数表示了一个图。

现在要求的就是有多少个图的集合(即二进制数的集合)异或和是0,即在异或图上所有有限制的点对都不存在对应的边。

怎么求呢?用线性基,集合个数就是\(2^{图的数量 - 线性基大小}\)。

  1. #include <cstdio>
  2. #include <cstring>
  3. #include <cmath>
  4. #include <algorithm>
  5. #include <iostream>
  6. #include <vector>
  7. #define space putchar(' ')
  8. #define enter putchar('\n')
  9. using namespace std;
  10. typedef long long ll;
  11. template <class T>
  12. void read(T &x){
  13. char c;
  14. bool op = 0;
  15. while(c = getchar(), c < '0' || c > '9')
  16. if(c == '-') op = 1;
  17. x = c - '0';
  18. while(c = getchar(), c >= '0' && c <= '9')
  19. x = x * 10 + c - '0';
  20. if(op) x = -x;
  21. }
  22. template <class T>
  23. void write(T x){
  24. if(x < 0) putchar('-'), x = -x;
  25. if(x >= 10) write(x / 10);
  26. putchar('0' + x % 10);
  27. }
  28. const int N = 11, M = 61;
  29. char s[N*N];
  30. bool conn[M][N][N];
  31. int n, m, bel[N];
  32. ll fac[N], lb[M], ans;
  33. void dfs(int u, int x){
  34. if(u > n){
  35. int sze = 0;
  36. for(int i = 1; i <= n; i++)
  37. for(int j = i + 1; j <= n; j++)
  38. if(bel[i] != bel[j]){
  39. ll val = 0;
  40. for(int k = 1; k <= m; k++)
  41. if(conn[k][i][j]) val |= 1LL << (k - 1);
  42. for(int k = 1; k <= sze; k++)
  43. if((val ^ lb[k]) < val) val ^= lb[k];
  44. if(val) lb[++sze] = val;
  45. }
  46. ans += fac[x] * (1LL << (m - sze));
  47. return;
  48. }
  49. for(int i = 1; i <= (x + 1); i++)
  50. bel[u] = i, dfs(u + 1, x + (i > x));
  51. }
  52. int main(){
  53. read(m);
  54. for(int k = 1; k <= m; k++){
  55. scanf("%s", s + 1);
  56. if(!n)
  57. for(int i = 1, len = strlen(s + 1); !n; i++)
  58. if(i * (i - 1) / 2 == len)
  59. n = i;
  60. for(int i = 1, p = 1; i <= n; i++)
  61. for(int j = i + 1; j <= n; j++)
  62. conn[k][i][j] = s[p++] - '0';
  63. }
  64. fac[1] = 1;
  65. for(int i = 2; i <= n; i++)
  66. fac[i] = fac[i - 1] * (1 - i);
  67. dfs(1, 0);
  68. write(ans), enter;
  69. return 0;
  70. }

BZOJ 4671 异或图 | 线性基 容斥 DFS的更多相关文章

  1. bzoj 4671 异或图——容斥+斯特林反演+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 考虑计算不是连通图的方案,乘上容斥系数来进行容斥. 可以枚举子集划分(复杂度是O(Be ...

  2. bzoj 4671 异或图 —— 容斥+斯特林反演+线性基

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4671 首先,考虑容斥,就是设 \( t[i] \) 表示至少有 \( i \) 个连通块的方 ...

  3. 【XSY2701】异或图 线性基 容斥原理

    题目描述 定义两个图\(G_1\)与\(G_2\)的异或图为一个图\(G\),其中图\(G\)的每条边在\(G_1\)与\(G_2\)中出现次数和为\(1\). 给你\(m\)个图,问你这\(m\)个 ...

  4. [BZOJ 4671]异或图

    Description 题库链接 给定 \(s\) 个结点数相同且为 \(n\) 的图 \(G_1\sim G_s\) ,设 \(S = \{G_1, G_2,\cdots , G_s\}\) ,问 ...

  5. 【BZOJ】4671: 异或图

    题解 写完之后开始TTTTTTT--懵逼 这道题我们考虑一个东西叫容斥系数啊>< 这个是什么东西呢 也就是\(\sum_{i = 1}^{m}\binom{m}{i}f_{i} = [m ...

  6. bzoj 2115 [Wc2011] Xor 路径最大异或和 线性基

    题目链接 题意 给定一个 \(n(n\le 50000)\) 个点 \(m(m\le 100000)\) 条边的无向图,每条边上有一个权值.请你求一条从 \(1\)到\(n\)的路径,使得路径上的边的 ...

  7. BZOJ 4568: [Scoi2016]幸运数字 [线性基 倍增]

    4568: [Scoi2016]幸运数字 题意:一颗带点权的树,求树上两点间异或值最大子集的异或值 显然要用线性基 可以用倍增的思想,维护每个点向上\(2^j\)个祖先这些点的线性基,求lca的时候合 ...

  8. 51Nod1577 异或凑数 线性基 构造

    国际惯例的题面:异或凑出一个数,显然是线性基了.显然我们能把区间[l,r]的数全都扔进一个线性基,然后试着插入w,如果能插入,则说明w不能被这些数线性表出,那么就要输出"NO"了. ...

  9. 【loj114】k大异或和 线性基+特判

    题目描述 给由 $n​$ 个数组成的一个可重集 $S​$ ,每次给定一个数 $k​$ ,求一个集合 $T⊆S​$ ,使得集合 $T​$ 在 $S​$ 的所有非空子集的不同的异或和中,其异或和 $T_1 ...

随机推荐

  1. Bitcoin 使用及配置记录

    常用配置 bitcoin-qt.exe -testnet -printtoconsole -conf=D:\Bitcoin\bitcoin.conf -datadir=D:\Bitcoin\Data ...

  2. 阿里巴巴Java开发规约插件p3c详细教程及使用感受 - 转

    http://www.cnblogs.com/han-1034683568/p/7682594.html

  3. [转]Web 通信 之 长连接、长轮询(long polling)

    本篇文章转载自Web 通信之长连接.长轮询(longpolling),版权归作者所有. 转者按:随着技术的发展,在HTML5中,可以通过WebSocket技术来完成长连接的开发,虽然如此,本文依然存在 ...

  4. Scala学习(七)---包和引入

    包和引入 摘要: 在本篇中,你将会了解到Scala中的包和引入语句是如何工作的.相比Java不论是包还是引入都更加符合常规,也更灵活一些.本篇的要点包括: 1. 包也可以像内部类那样嵌套 2. 包路径 ...

  5. 校内模拟赛 旅行(by NiroBC)

    题意: n个点的无向图,Q次操作,每次操作可以连接增加一条边,询问两个点之间有多少条边是必经之路.如果不连通,输出-1. 分析: 首先并查集维护连通性,每次加入一条边后,如果这条边将会连接两个联通块, ...

  6. c#基础系列2---深入理解 String

    "大菜":源于自己刚踏入猿途混沌时起,自我感觉不是一般的菜,因而得名"大菜",于自身共勉. 扩展阅读:深入理解值类型和引用类型 基本概念 string(严格来说 ...

  7. width,height为多少px时,A4纸打印时刚好一页?

    计算方式一般的分辨率为XX像素/英寸,其中一英寸为25.4毫米.所以一毫米的像素数就为XX/25.4.现在的工作就是求XX的值了,把XX的值求出来以后,直接用XX/25.4 * 210就得到A4纸的像 ...

  8. vue element-ui 动态上传

    上传填写完毕的幼儿及体测数据文件,上传成功后会自动导入该文件的数据 <el-upload :action="UploadUrl()" :on-success="Up ...

  9. 《linux内核设计与实现》读书笔记——第三章

  10. 响应数据传出(springMVC)

    1.    SpringMVC 输出模型数据概述 提供了以下几种途径输出模型数据: ModelAndView: 处理方法返回值类型为 ModelAndView 时, 方法体即可通过该对象添加模型数据 ...