题目描述

为了提高智商,ZJY开始学习概率论。有一天,她想到了这样一个问题:对于一棵随机生成的n个结点的有根二叉树(所有互相不同构的形态等概率出现),它的叶子节点数的期望是多少呢?
判断两棵树是否同构的伪代码如下:

题解

样例\(1\)是这个意思

我们需要解出两部分的答案,\(f(n)\)表示\(i\)个节点的树的个数,这个就是经典的卡特兰数为了方便计算我们将通项公式写成\(f(n)=\frac{C^n_(2n)}{n+1}\)的形式。
我们在定义\(g(n)\)表示\(i\)个节点中所有形态的树的叶节点总数。
我们打表发现有规律是\(g(n)=n\times f(n-1)\)。
给出两种证明:

关于规律的证明1

  • 对于每一个\(n\)个节点的二叉树,如果里面有\(k\)个叶节点,那么我们分别把\(k\)个叶子节点删去,那么就会得到\(k\)个\(n-1\)个点的二叉树。
  • 而每一棵\(n-1\)个点的二叉树恰好有\(n\)个位置可以悬挂一个新的叶子节点,所以每棵\(n-1\)个点的二叉树倍得到了\(n\)次;
  • 那么就是就可以得到\(g(n)=n\times f(n)\)。

关于规律的证明2

详细请见Miskcoo大大的博客

ac代码

#include <bits/stdc++.h>
using namespace std;
dd n;
int main(){
    scanf("%lf",&n);
    printf("%.9f\n",(n*n+n)/(4*n-2));
    return 0;
}

[luogu3978][bzoj4001][TJOI2005]概率论【基尔霍夫矩阵+卡特兰数】的更多相关文章

  1. bzoj 1002 [FJOI2007]轮状病毒 高精度&&找规律&&基尔霍夫矩阵

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2234  Solved: 1227[Submit][Statu ...

  2. BZOJ 1002: [FJOI2007]轮状病毒【生成树的计数与基尔霍夫矩阵简单讲解+高精度】

    1002: [FJOI2007]轮状病毒 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5577  Solved: 3031[Submit][Statu ...

  3. 【BZOJ】1002:轮状病毒(基尔霍夫矩阵【附公式推导】或打表)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下图 ...

  4. BZOJ1002 FJOI2007 轮状病毒 【基尔霍夫矩阵+高精度】

    BZOJ1002 FJOI2007 轮状病毒 Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子和圆心处一个核原子构成的,2个原 ...

  5. BZOJ 4031 HEOI2015 小Z的房间 基尔霍夫矩阵+行列式+高斯消元 (附带行列式小结)

    原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=4031 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可 ...

  6. bzoj 1002 找规律(基尔霍夫矩阵)

    网上说的是什么基尔霍夫矩阵,没学过这个,打个表找下规律,发现 w[i]=3*w[i-1]-w[i-2]+2; 然后写个高精直接递推就行了 //By BLADEVIL var n :longint; a ...

  7. [bzoj1002] [FJOI2007]轮状病毒轮状病毒(基尔霍夫矩阵)

    Description 轮状病毒有很多变种,所有轮状病毒的变种都是从一个轮状基产生的.一个N轮状基由圆环上N个不同的基原子 和圆心处一个核原子构成的,2个原子之间的边表示这2个原子之间的信息通道.如下 ...

  8. 无向图生成树计数 基尔霍夫矩阵 SPOJ Highways

    基尔霍夫矩阵 https://blog.csdn.net/w4149/article/details/77387045 https://blog.csdn.net/qq_29963431/articl ...

  9. bzoj1002: [FJOI2007]轮状病毒(基尔霍夫矩阵)

    1002: [FJOI2007]轮状病毒 题目:传送门 题解: 决定开始板刷的第一题... 看到这题的时候想:这不就是求有多少种最小生成树的方式吗? 不会啊!!!%题解... 什么鬼?基尔霍夫矩阵?? ...

随机推荐

  1. WPF中, 启用添加到RichTextBox中的控件

    原文:WPF中, 启用添加到RichTextBox中的控件   WPF中, 启用添加到RichTextBox中的控件                                           ...

  2. EZ 2018 07 06 NOIP模拟赛

    又是慈溪那边给的题目,这次终于没有像上次那样尴尬了, T1拿到了较高的暴力分,T2没写炸,然后T3写了一个优雅的暴力就203pts,Rank3了. 听说其它学校的分数普遍100+,那我们学校还不是强到 ...

  3. java缓存技术的介绍

    一.什么是缓存1.Cache是高速缓冲存储器 一种特殊的存储器子系统,其中复制了频繁使用的数据以利于快速访问2.凡是位于速度相差较大的两种硬件/软件之间的,用于协调两者数据传输速度差异的结构,均可称之 ...

  4. 学习ML.NET(3): 导入数据集

    机器学习算法需要作用于数据,用来训练算法模型.数据集通常是以纯文本文件存储的表格数据,文件的每一行是一条数据记录,每条记录由多列组成,列之间用分隔符(一般是逗号,)分开,例如前面用到过的鸢尾花数据集. ...

  5. MVC_防止HttpPost重复提交

    重复提交的场景很常见,可能是当时服务器延迟的原因,如购物车物品叠加,重复提交多个订单.常见的解决方法是提交后把Button在客户端Js禁用,或是用Js禁止后退键等.在ASP.NET MVC 3 Web ...

  6. Log4net_简单使用

    log4net 有四种主要的组件,分别是Logger(记录器), Repository(库), Appender(附着器)以及 Layout(布局). 第一步:Log4net的安装 Install-P ...

  7. python基础学习笔记(一)

    安装与运行交互式解释器 在绝大多数linux和 UNIX系统安装中(包括Mac OS X),Python的解释器就已经存在了.我们可以在提示符下输入python命令进行验证(作者环境ubuntu) f ...

  8. Echarts中graph类型的运用求教

    以下是百度Echarts官网上关系图的源码,但是这个关系图的node节点和edge都是静态文件里规定好的,我现在想动态实现,点击其中一个节点A然后新产生一个新节点B,并且有A和B之间的edge,就类似 ...

  9. spatial-temporal information extraction典型方法总结

    ==================================== 咳咳咳 由于科研的直接对象就是video sequence,所以,如何更好地提取spatial-temporal inform ...

  10. SVN入门教程

    1. 什么是SVN SVN全名Subversion,即版本控制系统.SVN与CVS一样,是一个跨平台的软件,支持大多数常见的操作系统. 作为一个开源的版本控制系统,Subversion管理者随时间改变 ...