[CC-MINXOR]XOR Minimization
[CC-MINXOR]XOR Minimization
题目大意:
有一个长度为\(n\)的数列\(A_{1\sim n}\)。\(q\)次操作,操作包含以下两种:
- 询问\(A_{l\sim r}\)中最小值及其出现次数;
- 将\(A_{l\sim r}\)中每个数字异或上\(k\)。
\(n\le250,000;q\le50,000;0\le A_i,k<2^{16}\)
思路:
分块+字典树
源代码:
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=250000,B=500,K=1<<16;
int n,a[N],tag[B],bel[N],beg[B],end[B];
struct Node {
int val,cnt;
};
class Trie {
private:
int val[K<<1];
public:
void reset() {
memset(val,0,sizeof val);
}
void insert(const int &x) {
for(register int i=15,p=1;i>=0;i--) {
p=p<<1|((x>>i)&1);
val[p]++;
}
}
Node query(const int &x) const {
int p=1,ret=0;
for(register int i=15;i>=0;i--) {
p<<=1;
if(val[p|((x>>i)&1)]) {
p|=(x>>i)&1;
} else {
ret|=1<<i;
p|=((x>>i)&1)^1;
}
}
return (Node){ret,val[p]};
}
};
Trie t[B];
inline void rebuild(const int &k) {
t[k].reset();
for(register int i=beg[k];i<=end[k];i++) {
t[k].insert(a[i]);
}
}
inline void modify(const int &l,const int &r,const int &k) {
if(bel[l]==bel[r]) {
for(register int i=beg[bel[l]];i<=end[bel[l]];i++) {
a[i]^=tag[bel[l]];
}
tag[bel[l]]=0;
for(register int i=l;i<=r;i++) {
a[i]^=k;
}
rebuild(bel[l]);
return;
}
for(register int i=beg[bel[l]];i<=end[bel[l]];i++) {
a[i]^=tag[bel[l]];
}
tag[bel[l]]=0;
for(register int i=l;i<=end[bel[l]];i++) {
a[i]^=k;
}
rebuild(bel[l]);
for(register int i=bel[l]+1;i<bel[r];i++) {
tag[i]^=k;
}
for(register int i=beg[bel[r]];i<=end[bel[r]];i++) {
a[i]^=tag[bel[r]];
}
tag[bel[r]]=0;
for(register int i=beg[bel[r]];i<=r;i++) {
a[i]^=k;
}
rebuild(bel[r]);
}
inline Node query(const int &l,const int &r) {
Node ans=(Node){K,0};
if(bel[l]==bel[r]) {
for(register int i=l;i<=r;i++) {
if((a[i]^tag[bel[i]])<ans.val) {
ans=(Node){a[i]^tag[bel[i]],0};
}
if((a[i]^tag[bel[i]])==ans.val) {
ans.cnt++;
}
}
return ans;
}
for(register int i=l;i<=end[bel[l]];i++) {
if((a[i]^tag[bel[i]])<ans.val) {
ans=(Node){a[i]^tag[bel[i]],0};
}
if((a[i]^tag[bel[i]])==ans.val) {
ans.cnt++;
}
}
for(register int i=bel[l]+1;i<bel[r];i++) {
const Node tmp=t[i].query(tag[i]);
if(tmp.val<ans.val) {
ans=(Node){tmp.val,0};
}
if(tmp.val==ans.val) {
ans.cnt+=tmp.cnt;
}
}
for(register int i=beg[bel[r]];i<=r;i++) {
if((a[i]^tag[bel[i]])<ans.val) {
ans=(Node){a[i]^tag[bel[i]],0};
}
if((a[i]^tag[bel[i]])==ans.val) {
ans.cnt++;
}
}
return ans;
}
int main() {
n=getint();
const int q=getint(),block=sqrt(n);
for(register int i=0;i<n;i++) {
bel[i]=i/block;
a[i]=getint();
t[bel[i]].insert(a[i]);
if(i&&bel[i]!=bel[i-1]) {
beg[bel[i]]=i;
}
end[bel[i]]=i;
}
for(register int i=0;i<q;i++) {
const int opt=getint(),l=getint()-1,r=getint()-1;
if(opt==1) {
const Node ans=query(l,r);
printf("%d %d\n",ans.val,ans.cnt);
}
if(opt==2) {
modify(l,r,getint());
}
}
return 0;
}
[CC-MINXOR]XOR Minimization的更多相关文章
- scau 2015寒假训练
并不是很正规的.每个人自愿参与自愿退出,马哥找题(马哥超nice么么哒). 放假第一周与放假结束前一周 2015-01-26 http://acm.hust.edu.cn/vjudge/contest ...
- CF&&CC百套计划2 CodeChef December Challenge 2017 Chef And Easy Xor Queries
https://www.codechef.com/DEC17/problems/CHEFEXQ 题意: 位置i的数改为k 询问区间[1,i]内有多少个前缀的异或和为k 分块 sum[i][j] 表示第 ...
- BZOJ2115 [Wc2011] Xor
Description Input 第一行包含两个整数N和 M, 表示该无向图中点的数目与边的数目. 接下来M 行描述 M 条边,每行三个整数Si,Ti ,Di,表示 Si 与Ti之间存在 一条权值为 ...
- bestcoder r44 p3 hdu 5270 ZYB loves Xor II
这是昨晚队友跟我说的题,不知道当时是什么玄幻的事件发生了,,我看成了两两相乘的XOR 纠结了好长时间间 不知道该怎么办 今天早上看了下这道题,发现是两两相加的XOR 然后就想了想昨晚的思路 发现可做 ...
- BZOJ 4269: 再见Xor [高斯消元 线性基]
4269: 再见Xor Description 给定N个数,你可以在这些数中任意选一些数出来,每个数可以选任意多次,试求出你能选出的数的异或和的最大值和严格次大值. 我太愚蠢了连数组开小了以及$2^{ ...
- BZOJ 2115: [Wc2011] Xor [高斯消元XOR 线性基 图]
啦啦啦 题意: N 个点M条边的边带权的无向图,求1到n一条XOR和最大的路径 感觉把学的东西都用上了.... 1到n的所有路径可以由一条1到n的简单路径异或上任意个简单环得到 证明: 如果环与路径有 ...
- D. Kuro and GCD and XOR and SUM
Kuro is currently playing an educational game about numbers. The game focuses on the greatest common ...
- cf1088D Ehab and another another xor problem (构造)
题意:有两数a,b,每次你可以给定c,d询问a xor c和b xor d的大小关系,最多询问62次($a,b<=2^{30}$),问a和b 考虑从高位往低位做,正在做第i位,已经知道了a和b的 ...
- 洛谷 P2574 XOR的艺术(线段树 区间异或 区间求和)
To 洛谷.2574 XOR的艺术 题目描述 AKN觉得第一题太水了,不屑于写第一题,所以他又玩起了新的游戏.在游戏中,他发现,这个游戏的伤害计算有一个规律,规律如下 1. 拥有一个伤害串为长度为n的 ...
随机推荐
- Shiro+Redis实现tomcat集群session共享
一.背景 当我们使用了nginx做项目集群以后,就会出现一个很严重的问题亟待解决,那就是:tomcat集群之间如何实现session共享的问题,如果这个问题不解决,就会出现登陆过后再次请求资源依旧 ...
- 2017-2018-2 20165206 实验三 《敏捷开发与XP实践》实验报告
2017-2018-2 20165206 实验三 <敏捷开发与XP实践>实验报告 一.实验报告封面 课程:Java程序设计 班级:1652班 姓名:韩啸 学号:20165206 指导教师: ...
- 在WPF中获取DATAGRIDTEMPLATECOLUMN模板定义的内容控件(转载)
原文:http://www.cnblogs.com/eric_ibm/p/3772516.html xaml格式描述: <DataGrid Name="dataGrid" G ...
- 修改Elasticsearch的settings
解决:Limit of total fields [1000] in index [nginx-access-log] has been exceeded" 的问题 PUT http://1 ...
- Doracle.jdbc.J2EE13Compliant=true
To make the Oracle driver behave in a Java EE-compliant manner, you must define the following JVM pr ...
- some advice in work
给研究生的建议 文档抄袭自:北航大佬 Fei-Fei Li:De-Mystifying Good Research and Good Papers (repost) 如何提升你的能力?给年轻程序员的几 ...
- P2860 [USACO06JAN]冗余路径Redundant Paths
题解: 首先要边双缩点这很显然 然后变成树上问题 发现dp,dfs好像不太对 考虑一下度数 发现只要在度数为1的点之间连边 但我好像不太会证明这个东西.. 网上也没有看到比较正确的证明方法和连边策略. ...
- windows下面使用nssm设置新的服务实现开机自启等
1.下载: http://nssm.cc/download/?page=download 2.解压: 根据自己的系统选择相应的32bit或者64bit,然后将相应的可执行文件拷贝到系统环境中.配置环境 ...
- ip访问网站和localhost访问网站中top使用
对于相对定位,使用margin-top不用简单使用top. top在localhost中能正常显示,在ip访问时会出现多余空白. margin-top不管是localhost中还是ip中都能正常显示.
- 【原创】java socket 和.net socket 通讯 demo
结束符协议"##" import java.io.BufferedReader; import java.io.IOException; import java.io.InputS ...