BZOJ

洛谷

这个数据范围。。考虑暴力一些把各种信息都记下来。不妨直接令\(f[i][j][k][0/1]\)表示当前为点\(i\),离\(i\)最近的建了伐木场的\(i\)的祖先为\(j\),\(i\)及\(i\)子树一共建了\(k\)个伐木场。\(0/1\)表示点\(i\)是否建了伐木场。

发现对于\(i\)的子树里的点\(v\),\(v\)建没建伐木场无所谓,需要的是它建了多少。所以DP完\(i\)后,\(i\)只保留\(f[i]...[0/1]\)中较小的一个作为点\(i\)的答案即可。

转移就是背包,暴力些即可。复杂度\(O(n^2k^2)\)。

既然都这么暴力地记录祖先了,不妨转移\(f[i]\)的时候直接DFS一遍子树(强制\(i\)选)。即令\(f[i][j]\)表示\(i\)子树共用\(j\)个伐木场的最小代价。这样虽然复杂度还是\(O(n^2k^2)\),但只需要二维的DP数组。

另外DP完当前点\(i\)后,是保留强制选\(i\)的DP值(不选\(i\)的也没法求啊);从其它点转移的时候,就无所谓取不取了。

为了方便,可以令\(f\)表示最大贡献(与到根节点相比少花多少代价)啊。

感觉还是有点迷...

//868kb	36ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
typedef long long LL;
const int N=105,INF=2e9; int K,w[N],dep[N],sz[N],H[N],nxt[N],f[N][55],g[N][55]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
inline void AE(int u,int v)
{
nxt[v]=H[u], H[u]=v;
}
void DP(int x,int dep_anc)
{
f[x][0]=dep_anc*w[x];
for(int v=H[x]; v; v=nxt[v])
{
DP(v,dep_anc);
for(int i=std::min(sz[x],K); ~i; --i)
for(int j=0; j<=std::min(sz[v],i); ++j)
f[x][i]=std::max(f[x][i],f[x][i-j]+f[v][j]);
}
for(int i=1; i<=K; ++i) f[x][i]=std::max(f[x][i],g[x][i]);//g[x][0]=0 (meaningless)
}
void DFS(int x)
{
sz[x]=1;
for(int v=H[x]; v; v=nxt[v]) dep[v]+=dep[x], DFS(v), sz[x]+=sz[v];
memset(f,0,sizeof f);
for(int v=H[x]; v; v=nxt[v])
{
DP(v,dep[x]);
for(int i=std::min(sz[x],K); ~i; --i)
for(int j=0; j<=std::min(sz[v],i); ++j)
g[x][i]=std::max(g[x][i],g[x][i-j]+f[v][j]);
}
if(x) for(int i=K,v=dep[x]*w[x]; i; --i) g[x][i]=g[x][i-1]+v;//在此之前未算入x(当然0本身不用算入)
// g[x][0]=0;
} int main()
{
int n=read(); K=read();
for(int i=1; i<=n; ++i) w[i]=read(),AE(read(),i),dep[i]=read();
DFS(0);
int ans=0,tmp=0;
for(int i=0; i<=K; ++i) tmp=std::max(tmp,g[0][i]);
for(int i=1; i<=n; ++i) ans+=dep[i]*w[i];
printf("%d\n",ans-tmp); return 0;
}

BZOJ.1812.[IOI2005]Riv 河流(树形背包)的更多相关文章

  1. BZOJ 1812: [Ioi2005]riv( 树形dp )

    树背包, 左儿子右兄弟来表示树, dp(x, y, z)表示结点x, x的子树及x的部分兄弟共建y个伐木场, 离x最近的伐木场是z时的最小代价. 时间复杂度O(N^2*K^2) ----------- ...

  2. 1812: [Ioi2005]riv

    1812: [Ioi2005]riv Time Limit: 10 Sec Memory Limit: 64 MB Submit: 635 Solved: 388 [Submit][Status][D ...

  3. bzoj1812 [IOI2005]riv河流

    题目链接 problem 给出一棵树,每个点有点权,每条边有边权.0号点为根,每个点的代价是这个点的点权\(\times\)该点到根路径上的边权和. 现在可以选择最多K个点.使得每个点的代价变为:这个 ...

  4. [LUOGU] P3354 [IOI2005]Riv 河流

    题目描述 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海.这条大河的入海口处有一个村庄--名叫 ...

  5. P3354 [IOI2005]Riv 河流

    树形dp,设f[i][j][k]表示第i个点的子树中选择j个点作为伐木场,而且k是建了伐木场的最浅的i的祖先的情况下,最小的收益. 这种题还要练一下,咕咕 然后转移可以n4方做. // luogu-j ...

  6. 【[IOI2005]Riv 河流】

    趁魏佬去英语演讲了,赶快%%%%%%%%%%%%%%魏佬 基本上是照着魏佬的代码写的 这其实还是一个树上背包 我们用\(dp[i][j][k]\)表示在以\(i\)为根的子树里,我们修建\(k\)个伐 ...

  7. 洛谷P3354 [IOI2005]Riv 河流——“承诺”DP

    题目:https://www.luogu.org/problemnew/show/P3354 状态中要记录一个“承诺”,只需相同承诺之间相互转移即可: 然后就是树形DP的套路了. 代码如下: #inc ...

  8. [IOI2005]Riv河流

    题目链接:洛谷,BZOJ 前置知识:莫得 题解 直接考虑dp.首先想法是设状态 \(dp[u][i]\) 表示u的子树内建 \(i\) 个伐木场且子树内木头都运到某个伐木场的最小花费.发现这样的状态是 ...

  9. [IOI2005]Riv 河流

    https://www.zybuluo.com/ysner/note/1300088 题面 有一棵\(n\)个点的树,现在在上面放\(k\)个标记,使得每个点的权值乘上自己到最近的标记祖先的距离的和最 ...

随机推荐

  1. CF451E

    一道不错的题,对排列组合能力的要求较高 题意:给定s个相同的小球放在n个不同的盒子里,可以不放,每个盒子有一个放的上限,求一共有多少种放法 解析:首先考虑没有上限的情况,这里比较好解决,采用隔板法,可 ...

  2. 饮冰三年-人工智能-linux-05 Linux进程

    1:top 命令,查看cpu使用情况.(由于top是实时刷新,占用内存比较大) P:按照cpu使用率降序排列 M:按照内存使用率降序排列 2:free 命令,查看内存使用情况 free -m 以M为单 ...

  3. C# 把ABCD转换成数字

    每倒题得选项可能是多选或者单选. public static string LetterTransformationNum(string answer, int type) { string num ...

  4. Supervisor Linux程序进程管理

    Supervisor 介绍 在linux或者unix操作系统中,守护进程(Daemon)是一种运行在后台的特殊进程,它独立于控制终端并且周期性的执行某种任务或等待处理某些发生的事件.由于在linux中 ...

  5. QQ登录用到的URL

    //QQ 登陆页面的URL,client_id就是APP ID,会返回一个codehttps://graph.qq.com/oauth2.0/authorize?response_type=code& ...

  6. 山寨版 WP8.1 Cortana 启动 PC

    8.1 dev preview 发布以来 Cortana 很受关注 前一段看到有视频演示用 Cortana 来启动 PC 看视频也是启动第三方应用实现的,简单来弄其实就是个语音启动应用 + 网络唤醒么 ...

  7. [转] babel-plugin-react-css-modules配置

    自己的react项目用到了css-modules,由于不太想在写className时写style.xxx于是google解决方案,找到了这货->babel-plugin-react-css-mo ...

  8. Summary of continuous function spaces

    In general differential calculus, we have learned the definitions of function continuity, such as fu ...

  9. fanuc 机床,加工中心通信总结,机床联网监控系统

    有需求要与fanuc机床及加工中心通讯,读取状态信息. 1.通过了解,与fanuc通讯需要具备的硬件条件如下: a.串口通讯:可以进行程序的上传下载,绝大部分机床状态也是以文件的形式保存,所以理论上都 ...

  10. bat处理复制文件

    1.建bat文件自动执行复制,删除命令. 复制cd.dll文件至windows\system32的bat文件内容: @echo offset JtlDir=D:\apache-jmeter-3.0\t ...