BZOJ

洛谷


求中位数除了\(sort\)还有什么方法?二分一个数\(x\),把\(<x\)的数全设成\(-1\),\(\geq x\)的数设成\(1\),判断序列和是否非负。

对于询问\((a,b,c,d)\),同样也可以二分中位数\(x\),然后把原序列对应地改为\(+1\)或\(-1\)。

此时区间\([b,c]\)中的数是必选的,求一个和\(sum\)。显然对于区间\([a,b-1]\),我们可以求一个和最大的后缀;对于区间\([c+1,d]\),可以求一个和最大的前缀。然后判断总和是否非负。

这些都可以建出线段树来维护。

显然每次二分不能重新建树。考虑刚开始时对每个\(x\)建一棵树。

假设序列中的数互不相同,每次二分的数从\(x\)变成\(x+1\)时,显然与\(x\)相比,从\(+1\)变成\(-1\)的数只有一个。也就是每次与上一次相比,只会改变一个位置。

如果序列中的数会重复,显然总复杂度也不会受影响。

所以可以对每个\(x\)建可持久化线段树,维护区间和、最大前缀后缀和即可。

复杂度\(O(n\log n+q\log^2n)\)。

对于重复的数(假设有\(c\)个位置满足\(A_i=x\)),其实不需要去重,建\(c\)棵不同的线段树即可。无论真正的中位数和\(x\)的关系如何,一定能二分到正确位置。

如果去重,注意对于每个值我们要保留最开始的那棵树(比如2 2 2,一直修改root[now]的话会是-1 -1 1,实际上可以是1 1 1 )。注意线段树范围是1~n不是1~cnt。。

去重虽然能优化二分边界,但是好像没什么实际效果(更慢了)= =

话说这就是可持久化线段树啊,为什么要叫它主席树呢


//12848kb	756ms
#include <cstdio>
#include <cctype>
#include <assert.h>
#include <algorithm>
//#define gc() getchar()
#define MAXIN 50000
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
typedef long long LL;
const int N=20005; int root[N];
std::pair<int,int> A[N];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Segment_Tree
{
#define ls son[x][0]
#define rs son[x][1]
#define S N*19//建树还有一个2n空间,但是不要卡着开n(2+logn)= =
int tot,Ans,son[S][2],sum[S],pre[S],suf[S];
#undef S
inline void Update(int x)
{
int l=ls, r=rs;
sum[x]=sum[l]+sum[r];
pre[x]=std::max(pre[l],sum[l]+pre[r]);
suf[x]=std::max(suf[r],sum[r]+suf[l]);
}
void Build(int &x,int l,int r)
{
x=++tot;
if(l==r) {sum[x]=pre[x]=suf[x]=1; return;}
int m=l+r>>1;
Build(ls,l,m), Build(rs,m+1,r), Update(x);
}
void Modify(int &x,int y,int l,int r,int p)
{
x=++tot;
if(l==r) {sum[x]=-1; return;}
int m=l+r>>1;
p<=m ? (rs=son[y][1],Modify(ls,son[y][0],l,m,p)) : (ls=son[y][0],Modify(rs,son[y][1],m+1,r,p));
Update(x);
}
int QuerySum(int x,int l,int r,int L,int R)
{
if(L<=l && r<=R) return sum[x];
int m=l+r>>1;
if(L<=m)
if(m<R) return QuerySum(ls,l,m,L,R)+QuerySum(rs,m+1,r,L,R);
else return QuerySum(ls,l,m,L,R);
return QuerySum(rs,m+1,r,L,R);
}
void QueryPre(int x,int l,int r,int L,int R)
{
if(L<=l && r<=R)
{
Ans=std::max(pre[x],Ans+sum[x]);
return;
}
int m=l+r>>1;
if(m<R) QueryPre(rs,m+1,r,L,R);
if(L<=m) QueryPre(ls,l,m,L,R);//max(QueryPre(lson),QuerySum(lson)+QueryPre(rson)) 这样写的复杂度是啥啊...= =
}
void QuerySuf(int x,int l,int r,int L,int R)
{
if(L<=l && r<=R)
{
Ans=std::max(suf[x],Ans+sum[x]);
return;
}
int m=l+r>>1;
if(L<=m) QuerySuf(ls,l,m,L,R);
if(m<R) QuerySuf(rs,m+1,r,L,R);
}
}T; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
bool Check(int x,int n,int a,int b,int c,int d)
{
int s=T.QuerySum(root[x],1,n,b,c);
if(s>=0) return 1;
if(a<b)
{
T.Ans=0, T.QuerySuf(root[x],1,n,a,b-1);//可以用同一个函数直接Query合并区间的=v= 为了常数算了= =
if((s+=T.Ans)>=0) return 1;
}
if(c<d)
{
T.Ans=0, T.QueryPre(root[x],1,n,c+1,d);
if((s+=T.Ans)>=0) return 1;
}
return 0;
} int main()
{
static int ref[N];
const int n=read();
for(int i=1; i<=n; ++i) A[i]=std::make_pair(read(),i);
std::sort(A+1,A+1+n); int cnt=1; ref[1]=A[1].first;
for(int i=2; i<=n; ++i) if(A[i].first!=A[i-1].first) ref[++cnt]=A[i].first;
T.Build(root[1],1,n), root[2]=root[1];
// for(int i=2; i<=n; ++i) T.Modify(root[i],root[i-1],1,n,A[i-1].second);
for(int i=2,now=2; i<=n; ++i)//A[n]不用管.
{
T.Modify(root[now],root[now],1,n,A[i-1].second);
if(A[i].first!=A[i-1].first) ++now, root[now]=root[now-1];//root[++now]=root[now-1] 还是不要写这种语句了=-=
}
for(int Q=read(),ans=0,q[4]; Q--; )
{
q[0]=(read()+ans)%n+1, q[1]=(read()+ans)%n+1, q[2]=(read()+ans)%n+1, q[3]=(read()+ans)%n+1;
std::sort(q,q+4);
int l=1,r=cnt,mid;
while(l<=r)
if(Check(mid=l+r>>1,n,q[0],q[1],q[2],q[3])) ans=mid, l=mid+1;
else r=mid-1;
printf("%d\n",ans=ref[ans]);
} return 0;
}

BZOJ.2653.[国家集训队]middle(可持久化线段树 二分)的更多相关文章

  1. [BZOJ 2653] middle(可持久化线段树+二分答案)

    [BZOJ 2653] middle(可持久化线段树+二分答案) 题面 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序 ...

  2. 【BZOJ-2653】middle 可持久化线段树 + 二分

    2653: middle Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1298  Solved: 734[Submit][Status][Discu ...

  3. [bzoj 2653][国家集训队]middle

    传送门 Description 一个长度为\(n\)的序列\(a\),设其排过序之后为\(b\),其中位数定义为\(b[n/2]\),其中\(a,b\)从\(0\)开始标号,除法取下整. 给你一个长度 ...

  4. [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+并查集+启发式合并)

    [BZOJ 3123] [SDOI 2013]森林(可持久化线段树+启发式合并) 题面 给出一个n个节点m条边的森林,每个节点都有一个权值.有两种操作: Q x y k查询点x到点y路径上所有的权值中 ...

  5. BZOJ 2653 middle (可持久化线段树+中位数+线段树维护最大子序和)

    题意: 左端点在[a,b],右端点在[c,d],求这个线段里中位数(上取整)最大值 思路: 对数组离散化,对每一个值建中位数的可持久化线段树(有重复也没事),就是对于root[i],大于等于i的值为1 ...

  6. BZOJ 3653: 谈笑风生(DFS序+可持久化线段树)

    首先嘛,还是太弱了,想了好久QAQ 然后,这道题么,明显就是求sigma(size[x]) (x是y的儿子且层树小于k) 然后就可以发现:把前n个节点按深度建可持久化线段树,就能用前缀和维护了 其实不 ...

  7. 【bzoj2653】middle 可持久化线段树区间合并

    题目描述 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个长度为n的序列s.回答Q个这样的询问:s的左端点在[a,b]之间,右端点在[ ...

  8. bzoj 4504: K个串 可持久化线段树+堆

    题目: Description 兔子们在玩k个串的游戏.首先,它们拿出了一个长度为n的数字序列,选出其中的一 个连续子串,然后统计其子串中所有数字之和(注意这里重复出现的数字只被统计一次). 兔子们想 ...

  9. bzoj 3514: GERALD07加强版 lct+可持久化线段树

    题目大意: N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. 题解: 这道题考试的时候没想出来 于是便爆炸了 结果今天下午拿出昨天准备的题表准备做题的时候 题表里就有这题 ...

随机推荐

  1. kali 局域网嗅探

    1.局域网图片嗅探 工具  arpspoof arpspoof -i eth0 -t 192.1681.10(网卡 目标地址) 192.168.1.1 局域网网关,如果在Windows中可以使用局域网 ...

  2. CF1121C 模拟

    恶心场恶心题,,round千万不能用库函数的.. /*枚举时间轴t,r是当前完成比例, 记录每个测试的开始时间si,如果有t-si等于r,那么这个测试就标记一下 优先队列存储每个测试,按照si+ai的 ...

  3. Nginx详解十九:Nginx深度学习篇之进阶高级模块

    这里介绍一些最新或者理解起来有一些难度的Nginx模块 一.secure_link_module模块作用原理:1.制定并允许检查请求的链接的真实性以及保护资源免遭未经授权的访问2.限制链接生效周期 配 ...

  4. WBXML 1.3协议摘要

    协议地址:WAP195   网络字节顺序:big-endian.   为什么要加0x40? 参考:Compressing XML When an element contains content (t ...

  5. spring quartz整合实现定时器自动注解

    1.web.xml中添加侦听器 <listener>    <listener-class>org.springframework.web.context.ContextLoa ...

  6. xxl系列部署启动通用办法

    http://10.10.6.186:8080/xxl-job-admin # 编译mvn compile # 清理mvn clean # 打包mvn package # 先清理后编译mvn clea ...

  7. .netcore读取配置文件

    setting.json { "compilerOptions": { "noImplicitAny": false, "noEmitOnError& ...

  8. idea格式化代码无效Ctrl+Alt+L

    1.Idea格式化代码,无效,我的原因是热键冲突,我按Ctrl+Alt+L的时候,竟然弹出了锁QQ,果断关了QQ的热键,百度有的是网易啥的,具体情况具体分析吧.

  9. JDK 自带压缩解压流

    代码如下 package com.test.java.zip; import java.io.BufferedInputStream; import java.io.BufferedOutputStr ...

  10. Entity Framework介绍

    1.Entity Framework介绍 下图显示EF整体架构.现在我们来看看架构的各个组件: EDM(Entity Data Model): EDM由三个主要部分组成:概念模型,映射和存储模型.映射 ...