算法实践--最长递增子序列(Longest Increasing Subsquence)
什么是最长递增子序列(Longest Increasing Subsquence)
对于一个序列{3, 2, 6, 4, 5, 1},它包含很多递增子序列{3, 6}, {2,6}, {2, 4, 5}, {1}
其中最长的递增子序列是{2, 4, 5}
问题:对于长度为N的矢量D,如何找到它的最长递增子序列
一个简单的算法
for (i=N; i>0; --i) {. 找到所有长度为i的子序列; //复杂度为(N!)/(i!)(N-i)! O(exp(N))
. 判断是否其中有一个为递增子序列
}
动态规划算法
基本思想:将一个复杂问题,分解为更小的子问题
首先定义LIS[i],表示以D[i]结尾的最长子序列
对于矢量D = {, , , , , }; LIS[]:
LIS[]:
LIS[]: ,
LIS[]: ,
LIS[]: ,,
LIS[]:
给出递推公式
LIS[0] = D[0]
LIS[i] = MAX(LIS[j] | j <i, D[j] <D[i]) + "D[i]"
解释:
当我们求LIS[i]时,对于任意j<i,LIS[j]都已知
在所有已知的LIS中,找出结尾的元素值小于D[i],长度最长的一个
然后在后面加上D[i]元素,即为LIS[i]
示例C++代码
using namespace std; void prt(vector<int>& arr, string msg = "") {
cout << msg << " ";
for (auto i: arr) {
cout << i << " ";
}
cout << endl;
} void calc_LIS(vector<int>& D) {
vector< vector<int> > L(D.size()); // The longest increasing subsequence ends with D[i] L[].push_back(D[]); for (int i=; i<D.size(); i++) {
for(int j=; j<i; j++) {
if ( (D[j] < D[i]) && ( L[i].size() < L[j].size() ) ) {
L[i] = L[j];
}
}
L[i].push_back(D[i]);
} for (auto x: L) {
prt(x);
}
} int main() {
int a[] = {, , , , , };
vector<int> arr(a, a + sizeof(a)/sizeof(a[])); prt(arr, "Data In:");
calc_LIS(arr); return ;
}
复杂度分析
时间复杂度是O(N^2)
动态规范的基本思想是以一定的空间开销,显著缩短时间开销
算法实践--最长递增子序列(Longest Increasing Subsquence)的更多相关文章
- 算法实践--最长公共子序列(Longest Common Subsquence)
什么是最长公共子序列 X=ACCG Y=CCAGCA 长度为1的公共子序列: {A} {C} {G} 长度为2的公共子序列:{AC} {CC} {CG} {AG} 长度为3的公共子序列:{ACG} 长 ...
- 最长递增子序列(Longest increasing subsequence)
问题定义: 给定一个长度为N的数组A,找出一个最长的单调递增子序列(不要求连续). 这道题共3种解法. 1. 动态规划 动态规划的核心是状态的定义和状态转移方程.定义lis(i),表示前i个数中以A[ ...
- 【转】动态规划:最长递增子序列Longest Increasing Subsequence
转自:https://www.cnblogs.com/coffy/p/5878915.html 设f(i)表示L中以ai为末元素的最长递增子序列的长度.则有如下的递推方程: 这个递推方程的意思是,在求 ...
- 最长递增子序列(Longest Increase Subsequence)
问题 给定一个长度为N的数组,找出一个最长的单调自增子序列(不一定连续,但是顺序不能乱).例如:给定一个长度为6的数组A{5, 6, 7, 1, 2, 8},则其最长的单调递增子序列为{5,6,7,8 ...
- 300最长上升子序列 · Longest Increasing Subsequence
[抄题]: 往上走台阶 最长上升子序列问题是在一个无序的给定序列中找到一个尽可能长的由低到高排列的子序列,这种子序列不一定是连续的或者唯一的. 样例 给出 [5,4,1,2,3],LIS 是 [1,2 ...
- [Swift]LeetCode300. 最长上升子序列 | Longest Increasing Subsequence
Given an unsorted array of integers, find the length of longest increasing subsequence. Example: Inp ...
- [Swift]LeetCode329. 矩阵中的最长递增路径 | Longest Increasing Path in a Matrix
Given an integer matrix, find the length of the longest increasing path. From each cell, you can eit ...
- nlog(n)解动态规划--最长上升子序列(Longest increasing subsequence)
最长上升子序列LIS问题属于动态规划的初级问题,用纯动态规划的方法来求解的时间复杂度是O(n^2).但是如果加上二叉搜索的方法,那么时间复杂度可以降到nlog(n). 具体分析参考:http://b ...
- 动态规划--最长上升子序列(Longest increasing subsequence)
前面写了最长公共子序列的问题.然后再加上自身对动态规划的理解,真到简单的DP问题很快就解决了.其实只要理解了动态规划的本质,那么再有针对性的去做这方的题目,思路很快就会有了.不错不错~加油 题目描述: ...
随机推荐
- opencv3.0配置opencv_contrib
在opencv3.0中无法直接使用sift,surf等特征点检测算子,需要额外配置opencv_contrib. 在查看网上诸多教程,失败n次后,终于找到了正确的配置方式. visual studio ...
- 『TensorFlow』读书笔记_多层感知机
多层感知机 输入->线性变换->Relu激活->线性变换->Softmax分类 多层感知机将mnist的结果提升到了98%左右的水平 知识点 过拟合:采用dropout解决,本 ...
- 『关键点检测』CPN:Cascaded Pyramid Network for Multi-Person Pose Estimation
论文连接 网络简介 face++2017年coco keypoint benchmark 数据集冠军的文章,发表于CVPR201 1 提出了一种金字塔型的串接模型,即CPN(cascaded pyr ...
- Matlab:导数边界值的有限元(Ritz)法
tic; % this method is transform from Ritz method %is used for solving two point BVP %this code was w ...
- less的学习(@变量名)
引自:https://www.cnblogs.com/starof/p/5226739.html Less 是一门 CSS 预处理语言,它扩充了 CSS 语言,增加了诸如变量.混合(mixin).函数 ...
- 跟随我在oracle学习php(8)
JavaScript 是一种专为与网页交互而设计的脚本语言, javascript:特效 表单验证原理:什么时候,找到标签,什么时候,操作标签 使用<script>元素的方式有两种:直接在 ...
- linux c使用socket进行http 通信,并接收任意大小的http响应(三)
使用socket进行http通信的时候,浏览器返回的响应经常不是固定长度的,有时候很大,有些时候又非常小,十分讨厌.如果仅仅只是为了接收一小段信息,设置一个十分大的缓存,这样又会十分浪费.而且经常更改 ...
- [Codeforces477D]Dreamoon and Binary
Problem 给定一个字符串数的二进制表示(不含前导0)s(长度不超过5000), 对于一个数n(初值为0),可以进行以下两种操作: 1.将n的二进制表示(无前导0)写到已经写的串的后面. 2.n加 ...
- Linux:Ubuntu系统的安装
好久没更了,今天就更完这一期的Linux系统吧,这次主要安装的是常用Linux系统的之一:Ubuntu(乌班图)系统,这个系统和CentOS 7的安装步骤也是类似的,(我不采取用虚拟机的方法来安装,当 ...
- c++ 生成dll文件并调用-转
.h(头文件) .lib(库文件) .dll(动态链接库文件) 之间的关系和作用的区分 .h头文件是编译时必须的,lib是链接时需要的,dll是运行时需要的. 附加依赖项的是.lib不是.dll, ...