Description

题库链接

给出一张 \(m\) 个点的有向图。问可重最小路径覆盖是否 \(\leq n+1\) 。若不,求最多用 \(n+1\) 条路径去覆盖,最大化未覆盖点点权最小值。

\(1\leq n\leq 50,1\leq m\leq 500\)

Solution

\(\text{floyd}\) 传递闭包之后做最小路径覆盖...

若无解,考虑二分未覆盖点点权最小值,将点权小于 \(mid\) 的点加入图中做最小路径覆盖。

写这题其实是打 \(\text{dinic}\) 板子的...

Code

#include <bits/stdc++.h>
using namespace std;
const int N = 500+5, inf = ~0u>>1; int n, m, G[N][N], v[N], k, u;
struct tt {int to, next, cap; }edge[N*N<<1];
int path[N<<1], top, S = (N<<1)-2, T = (N<<1)-1;
int sta[N<<1], cur[N<<1], dist[N<<1];
queue<int>Q; bool bfs() {
memset(dist, -1, sizeof(dist));
Q.push(S); dist[S] = 1;
while (!Q.empty()) {
int u = Q.front(); Q.pop();
for (int i = path[u], v; ~i; i = edge[i].next)
if (dist[v = edge[i].to] == -1 && edge[i].cap > 0)
Q.push(v), dist[v] = dist[u]+1;
}
return dist[T] != -1;
}
int dinic() {
int totflow = 0;
while (bfs()) {
int u = S; top = 0; memcpy(cur, path, sizeof(cur));
while (1) {
if (u == T) {
int loc, minflow = inf;
for (int i = 1; i <= top; i++) if (edge[sta[i]].cap < minflow) minflow = edge[sta[loc = i]].cap;
for (int i = 1; i <= top; i++) edge[sta[i]].cap -= minflow, edge[sta[i]^1].cap += minflow;
totflow += minflow; u = edge[sta[loc]^1].to, top = loc-1;
}
for (int &i = cur[u], v; ~i; i = edge[i].next)
if (dist[v = edge[i].to] == dist[u]+1 && edge[i].cap > 0) {
sta[++top] = i, u = v; break;
}
if (cur[u] == -1) {
if (top == 0) break;
dist[u] = -inf; u = edge[sta[top--]^1].to;
}
}
}
return totflow;
}
void add(int u, int v, int c) {
edge[++top] = (tt){v, path[u], c}; path[u] = top;
edge[++top] = (tt){u, path[v], 0}; path[v] = top;
}
bool judge(int mid) {
memset(path, top = -1, sizeof(path)); int cnt = 0;
for (int i = 1; i <= m; i++) add(S, i, 1), add(i+N-5, T, 1);
for (int i = 1; i <= m; i++)
if (v[i] < mid) {
++cnt;
for (int j = 1; j <= m; j++)
if (v[j] < mid && G[i][j])
add(i, j+N-5, 1);
}
return cnt-dinic() <= n+1;
}
void work() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; i++) {
scanf("%d%d", &v[i], &k);
for (int j = 1; j <= k; j++) scanf("%d", &u), G[i][u] = 1;
}
for (int k = 1; k <= m; k++)
for (int i = 1; i <= m; i++)
for (int j = 1; j <= m; j++)
G[i][j] |= (G[i][k]&G[k][j]);
if (judge(1000000000+1)) {puts("AK"); return; }
int L = 0, R = 1e9, ans;
while (L <= R) {
int mid = (L+R)>>1;
if (judge(mid)) ans = mid, L = mid+1;
else R = mid-1;
}
printf("%d\n", ans);
}
int main() {work(); return 0; }

[TJOI 2018]智力竞赛的更多相关文章

  1. [Offer收割]编程练习赛3 - 题目3 : 智力竞赛

    智力竞赛 Problem's Link ---------------------------------------------------------------------------- Mea ...

  2. hihocoder #1285 智力竞赛

    传送门 总结: 1.仔细读题 2.仔细分析复杂度 3.不要想当然,乱下结论 时间限制:5000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi.小Ho还有被小Hi强拉来的小Z,准备组队 ...

  3. 【BZOJ5335】[TJOI2018]智力竞赛(二分图匹配)

    [BZOJ5335][TJOI2018]智力竞赛(二分图匹配) 题面 BZOJ 洛谷 题解 假装图不是一个DAG想了半天,.发现并不会做. 于是假装图是一个DAG. 那么显然就是二分答案,然后求一个最 ...

  4. loj#2574. 「TJOI2018」智力竞赛 (路径覆盖)

    目录 题目链接 题解 代码 题目链接 loj#2574. 「TJOI2018」智力竞赛 题解 就是求可重路径覆盖之后最大化剩余点的最小权值 二分答案后就是一个可重复路径覆盖 处理出可达点做二分图匹配就 ...

  5. 「TJOI 2018」教科书般的亵渎

    「TJOI 2018」教科书般的亵渎 题目描述 小豆喜欢玩游戏,现在他在玩一个游戏遇到这样的场面,每个怪的血量为 \(a_i\) ,且每个怪物血量均不相同, 小豆手里有无限张"亵渎" ...

  6. 「TJOI 2018」游园会 Party

    「TJOI 2018」游园会 Party 题目描述 小豆参加了 \(NOI\) 的游园会,会场上每完成一个项目就会获得一个奖章,奖章只会是 \(N, O, I\) 的字样. 在会场上他收集到了 \(K ...

  7. BZOJ5335:[TJOI2018]智力竞赛——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5335 小豆报名参加智力竞赛,他带上了n个好朋友作为亲友团一块来参加比赛. 比赛规则如下: 一共有m ...

  8. hihocoder-1285 智力竞赛(区间dp)

    智力竞赛 时间限制:5000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi.小Ho还有被小Hi强拉来的小Z,准备组队参加一个智力竞赛.竞赛采用过关制,共计N个关卡.在第i个关卡中,小 ...

  9. 洛谷P4589 [TJOI2018]智力竞赛(二分答案 二分图匹配)

    题意 题目链接 给出一个带权有向图,选出n + 1n+1条链,问能否全部点覆盖,如果不能,问不能覆盖的点权最小值最大是多少 Sol TJOI怎么净出板子题 二分答案之后直接二分图匹配check一下. ...

随机推荐

  1. 深入理解JVM(四)JVM性能监控与故障处理工具

    4.2 JVM命令行工具 1.jps(JVM Process Status Tool):JVM进程查看工具,命令行进入到jdk的bin目录下,使用命令:jps -l/-q/-v/-m 2.jstat( ...

  2. ibatis (六) dynamic的用法

    view plain copy print? dynamic可以去除第一个prepend="and"中的字符(这里为and),从而可以帮助你实现一些很实用的功能.具体情况如下: 1 ...

  3. ios 学习路线总结

    学习方法 面对有难度的功能,不要忙着拒绝,而是挑战一下,学习更多知识. 尽量独立解决问题,而不是在遇到问题的第一想法是找人. 多学习别人开源的第三方库,能够开源的库一定有值得学习的地方,多去看别的大神 ...

  4. 2019.02.21 bzoj2739: 最远点(决策单调性+分治)

    传送门 题意简述:给一个N个点的凸多边形,求离每一个点最远的点. 思路:先根据初中数学知识证明决策是满足单调性的,然后上分治优化即可. 才不是因为博主懒得写二分+栈优化呢 代码: #include&l ...

  5. javascript的常用事件

  6. CCPC-2017-秦皇岛站

    10月25日 听说信用卡到了好兴奋,然而没有额度是啥情况啊qwq. 晚上坐飞机出发,成都-鄂尔多斯-石家庄-秦皇岛,队友吐槽鄂尔多斯到石家庄好近啊,然后过了一会儿我们因为石家庄大雾迫降在了济南.嘤嘤嘤 ...

  7. SDWebImage之SDWebImageDownloader

    SDWebImageDownloader完成了对网络图片的异步下载工作,准确说这个类是一个文件下载的工具类,真正的网络请求是在继承于NSOperation的SDWebImageDownloaderOp ...

  8. JavaSE核心之一:Date类、Calendar类、Math类、枚举;

    1.Date类 1) java.util.Date类用于封装日期及时间信息,一般仅用它显示某个日期,不对他作任何操作处理,作处理用Calendar类,计算方便. 2) Date 类本质上拥有一个lon ...

  9. 开源播放器 ijkplayer (一) :使用Ijkplayer播放直播视频

    1.ijkplayer 编码 IjkPlayer支持硬解码和软解码. 软解码时不会旋转视频角度这时需要你通过onInfo的what == IMediaPlayer.MEDIA_INFO_VIDEO_R ...

  10. 面试时遇到的题目。正则,replace()

    function Fn(str){ this.str = str; } Fn.prototype.format = function(){ var arg = arguments; var dd = ...