转自:http://www.cnblogs.com/rocketfan/archive/2011/07/03/2096953.html

主要记录下几个文章博客内容

A Note on EM Algorithm for Probabilistic Latent SemanticAnalysis(翟成祥的NOTE)

A Note on EM Algorithm and PLSA(一个中文比较好的总结 by Xinyan Lu)

注意这两个是一个思路

Probabilistic Latent Semantic Analysis (原论文)

原论文是另一个思路

Notes on Probabilistic Latent Semantic Analysis (PLSA)(这个里面对比了两种不同思路,原论文与翟成祥NOTE,Xinyan Lu中文总结 分布对应这两种思路)

先看第一种思路,这个更好理解一点

典型的EM算法 hidden/latent variable 是主题Z,p(d)对于我们的计算可忽略,最后面那个博客的总结证明更完整。

类似前面的混合高斯模型,这里实际Estep要估算的就是对应d,w 情况下Z的概率

Estep 对比前面高斯模型 具体一个观察点情况下对应到隐藏分类的概率

解释下 sum_z(p(z|d)p(w|z))= p(w|d)     p(d)p(w|d)p(z|d,w) = p(d,w,z)  => p(w|d)p(z|d,w) = p(d,w,z)/p(d) = p(w,z|d)=p(z|d)p(w|z)

=> p(z|w,d) = p(z|d)(pw|z) / p(w|d)

Mstep

对比NG的课件

x对应这里的w

如果我们考虑背景噪音,翟成祥的NOTE更进一步给出了在这个基础上稍微复杂一点的MODLE和结果

考虑下翟成祥那篇EM中的简单混合模型

  topic Z

其实和上面公式一样  p(z|d)

第二种思路

TODO

PLSA中的EM算法的更多相关文章

  1. 机器学习中的EM算法具体解释及R语言实例(1)

    最大期望算法(EM) K均值算法很easy(可參见之前公布的博文),相信读者都能够轻松地理解它. 但以下将要介绍的EM算法就要困难很多了.它与极大似然预计密切相关. 1 算法原理 最好还是从一个样例開 ...

  2. opencv3中的机器学习算法之:EM算法

    不同于其它的机器学习模型,EM算法是一种非监督的学习算法,它的输入数据事先不需要进行标注.相反,该算法从给定的样本集中,能计算出高斯混和参数的最大似然估计.也能得到每个样本对应的标注值,类似于kmea ...

  3. 机器学习-EM算法笔记

    EM算法也称期望最大化(Expectation-Maximum,简称EM)算法,它是一个基础算法,是很多机器学习领域算法的基础,比如隐式马尔科夫算法(HMM), LDA主题模型的变分推断,混合高斯模型 ...

  4. 高斯混合和EM算法

    首先介绍高斯混合模型: 高斯混合模型是指具有以下形式的概率分布模型: 一般其他分布的混合模型用相应的概率密度代替(1)式中的高斯分布密度即可. 给定训练集,我们希望构建该数据联合分布 这里,其中是概率 ...

  5. EM算法及其推广的要点

    1.EM算法是含有隐变量的变量的概率模型极大似然估计或极大后验概率估计的迭代算法,含有隐变量的概率模型的数据表示为$P(Y,Z|\theta)$.这里,$Y$是观测变量的数据,$Z$是隐变量的数据,$ ...

  6. EM算法学习资料备忘

    将学习EM算法过程中看到的好的资料汇总在这里,供以后查询.也供大家參考. 1. 这是我学习EM算法最先看的优秀的入门文章,讲的比較通俗易懂,并且举了样例来说明当中的原理.不错! http://blog ...

  7. EM算法(Expectation Maximization Algorithm)

    EM算法(Expectation Maximization Algorithm) 1. 前言   这是本人写的第一篇博客(2013年4月5日发在cnblogs上,现在迁移过来),是学习李航老师的< ...

  8. EM算法(expectation maximization)

    EM算法简述 EM算法是一种迭代算法,主要用于含有隐变量的概率模型参数的极大似然估计,或极大后验概率估计.EM算法的每次迭代由两步完成: E步,求期望 M步,求极大. EM算法的引入 如果概率模型的变 ...

  9. PLSA及EM算法

    前言:本文主要介绍PLSA及EM算法,首先给出LSA(隐性语义分析)的早期方法SVD,然后引入基于概率的PLSA模型,其参数学习采用EM算法.接着我们分析如何运用EM算法估计一个简单的mixture ...

随机推荐

  1. (转)每天一个Linux命令(6):mv

    mv命令是move的缩写,可以用来移动文件或者将文件改名(move (rename) files),是Linux系统下常用的命令,经常用来备份文件或者目录. 1.命令格式: mv [选项] 源文件或目 ...

  2. 【英语】Bingo口语笔记(16) - 咬舌音和咬唇音的辨读

  3. Android 线程与消息 机制 15问15答

    1.handler,looper,messagequeue三者之间的关系以及各自的角色? 答:MessageQueue就是存储消息的载体,Looper就是无限循环查找这个载体里是否还有消息.Handl ...

  4. suse linux环境变量设置

    以在suse上安装jdk1.5为例说明: 安装jdk1.5完毕后,就可以配置环境变量了. su  root XXXXXX // 键入管理员密码 对于suse来说,只需在/etc/profile 文件后 ...

  5. org-mode

    org-mode 编辑   目录 1简介 2扩展     1简介编辑 Org-模式(Org-mode)是文本编辑软件Emacs的一种支持内容分级显示的编辑模式.这种模式支持写 to-do 列表,日志管 ...

  6. 可以用google了

    半年都上不了google,现在可以了, 哈哈,支持自动更新, 有时候用google还是很不错的,尤其是英文搜索.

  7. 获取Request请求的路径信息

    从Request对象中可以获取各种路径信息,以下例子: 假设请求的页面是index.jsp,项目是WebDemo,则在index.jsp中获取有关request对象的各种路径信息如下 String p ...

  8. php-LAMP试题

    ylbtech-doc:php-LAMP试题 LAMP试题 1.A,LAMP试题返回顶部 1.{PHP LAMP题目}变量$email的值是字符串 user@example.com ,以下哪项能把字符 ...

  9. cp: omitting directory”错误的解释和解决办法

    在linux下拷贝的时候有时候会出现cp:omitting directory的错误 ,例如 cp:omitting directory "bbs" 说明bbs目录下面还有目录,不 ...

  10. 7、NFC技术:让Android自动运行程序

    用于描述NDEF格式数据的两个重要的类 NdefMessage:描述NDEF格式的信息 NdefRecord:描述NDEF信息的一个信息段  NdefMessage和NdefRecord是Androi ...